Volume 45 Issue 2
Feb.  2024
Turn off MathJax
Article Contents
Li Wei, Bai Qingqing. Microstructures and high temperature properties of high Nb ferritic stainless steels for exhaust system[J]. IRON STEEL VANADIUM TITANIUM, 2024, 45(2): 132-138. doi: 10.7513/j.issn.1004-7638.2024.02.019
Citation: Li Wei, Bai Qingqing. Microstructures and high temperature properties of high Nb ferritic stainless steels for exhaust system[J]. IRON STEEL VANADIUM TITANIUM, 2024, 45(2): 132-138. doi: 10.7513/j.issn.1004-7638.2024.02.019

Microstructures and high temperature properties of high Nb ferritic stainless steels for exhaust system

doi: 10.7513/j.issn.1004-7638.2024.02.019
More Information
  • Received Date: 2023-06-26
    Available Online: 2024-04-30
  • Publish Date: 2024-04-30
  • During the research and development of new hot end materials for automobile exhaust system, annealing experiments, grain coarsening resistance experiments, aging resistance experiments, high temperature tensile and high temperature creeping experiments were carried out on the experimental steels in order to explore the influence of Nb contents on steels microstructures and properties. OM and SEM were used to characterize the microstructural evolution of the experimental steels in each process, and the influence of Nb content on the properties was evaluated by tensile tests and SAG test-Creeping tests. The results show that the increase of Nb content can lead to more precipitates to refine the grains and provide precipitation strengthening as well as improve the room temperature mechanical properties. The effect of high Nb content on grain coarsening is more obvious, but the coarsening of precipitates at the same time leads to a greater decline in properties after aging. The high temperature strength of the experimental steels with high Nb content decreases due to the influence of dynamic recrystallization and a large number of Laves phases. At the same temperature, the creep resistance of experimental steels with different Nb contents has little difference. With the increase of temperature, the precipitates coarsen seriously and the creep resistance decreases.
  • loading
  • [1]
    范喜康. 铁素体不锈钢[M]. 北京: 冶金工业出版社, 2012: 87-99.

    Fan Xikang. Ferritic stainless steel [M]. Beijing: Metallurgical Industry Press, 2012: 87-99.
    [2]
    郑家昊. 新型耐热铁素体不锈钢合金化设计及性能研究[D]. 沈阳: 东北大学, 2017.

    Zheng Jiahao. An investigation on the alloying design and performances of new heat-resistant ferritic stainless steel[D]. Shenyang: Northeastern University, 2017.
    [3]
    Kwon O, Deardo A J. Interactions between recrystallization and precipitation in hot-deformed microalloyed steels[J]. Acta Metallurgica Et Materialia, 1991,39(4):529−538.
    [4]
    Juuti T, Rovatti L, Porter D, et al. Factors controlling ambient and high temperature yield strength of ferritic stainless steel susceptible to intermetallic phase formation[J]. Materials Science & Engineering A, 2018,726:45−55.
    [5]
    Fujita N, Bhadeshia H, Kikuchi M. Modeling M6C precipitation in niobium-alloyed ferritic stainless steel[J]. Metallurgical and Materials Transactions A, 2002,33(11):3339−3347. doi: 10.1007/s11661-002-0322-z
    [6]
    房常帅. 高韧性SUS444铁素体不锈钢中板组织与性能研究[D]. 沈阳: 东北大学, 2018.

    Fang Changshuai. Study on microstructure and properties of high toughness SUS444 ferritic stainless steel medium plate[D]. Shenyang: Northeastern University, 2018.
    [7]
    侯雨阳. 钛、铌对超纯铁素体不锈钢凝固过程第二相析出及对凝固组织的影响[D]. 北京: 北京科技大学, 2020.

    Hou Yuyang. Effect of titanium and niobium on second phase precipitation during solidification and as-cast structure of high-purity ferritic stainless steel[D]. Beijing: University of Science and Technology Beijing, 2020.
    [8]
    何明琳. 超级铁素体不锈钢时效析出行为研究[D]. 天津: 天津大学, 2014.

    He Minglin. The research on intermetallics precipitation behaviors of super ferritic stainless steel[D]. Tianjin: Tianjin University, 2014.
    [9]
    陈安忠, 任娟红, 王军伟, 等. 高温时效对铁素体不锈钢组织和性能的影响[J]. 中国冶金,2018, 28(11): 30-35.

    Chen Anzhong, Ren Juanhong, Wang Junwei, et al. Effect of high temperature aging on microstructure and properties of ferritic stainless steel[J]. China Metallurgy: 28(11): 30-35.
    [10]
    牧正志. 细化钢铁材料晶粒的原理与方法[J]. 热处理, 2006, 21(1): 1-94.

    Mu Zhengzhi. Principle and various methods for grain refinement of steels[J]. Heat Treament, 2006, 21(1): 1-94.
    [11]
    Yan H, Bi H, Li X, et al. Precipitation and mechanical properties of Nb-modified ferritic stainless stee1 during isothermai aging[J]. Materials Characterization, 2009, 60(3): 244-209.
    [12]
    徐昂. 两种铁素体不锈钢高温力学性能及失效行为分析[D]. 沈阳: 沈阳工业大学, 2021.

    Xu Ang. Mechanical properties and failure behavior of two ferritic stainless steels at high temperature[D]. Shenyang: Shenyang University of Technology.
    [13]
    王建梅. 油膜轴承蠕变理论[M]. 北京: 冶金工业出版社, 2018: 12-13.

    Wang Jianmei. Creep theory of oil film bearings[M]. Beijing: Metallurgical Industry Press, 2018: 12-13.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(5)

    Article Metrics

    Article views (288) PDF downloads(17) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return