| Citation: | Zheng Yaxu, Yang Qin, Zhao Ziyu, Wei Cuihu, Hui Shixu, Wu Kangye. Study on the precipitation kinetics of carbides in austenite and ferrite of microalloyed steels[J]. IRON STEEL VANADIUM TITANIUM, 2024, 45(2): 139-148. doi: 10.7513/j.issn.1004-7638.2024.02.020 |
| [1] |
Chen Zihao, Zhang Ke, Fu Xibin, et al. Effect of V content on microstructure and mechanical properties of Ti-V composite microalloy steel[J]. The Chinese Journal of Process Engineering, 2021,21(7):827−835. (陈子豪, 张可, 付锡彬, 等. V含量对Ti-V复合微合金钢组织和力学性能的影响[J]. 过程工程学报, 2021,21(7):827−835. doi: 10.12034/j.issn.1009-606X.221107
Chen Zihao, Zhang Ke, Fu Xibin, et al. Effect of V content on microstructure and mechanical properties of Ti-V composite microalloy steel[J]. The Chinese Journal of Process Engineering, 2021, 21(7): 827-835. doi: 10.12034/j.issn.1009-606X.221107
|
| [2] |
Zhou Dan, Chai Xiyang, Liang Fengrui, et al. Effects of V, V-N and V-Nb microalloying on microstructure and properties of high-strength ship plate steel[J]. Heat Treatment of Metals, 2019,44(6):60−64. (周丹, 柴希阳, 梁丰瑞, 等. V、V-N与V-Nb微合金化对高强船板钢组织与性能的影响[J]. 金属热处理, 2019,44(6):60−64.
Zhou Dan, Chai Xiyang, Liang Fengrui, et al. Effects of V, V-N and V-Nb microalloying on microstructure and properties of high-strength ship plate steel[J]. Heat Treatment of Metals, 2019, 44(6): 60-64.
|
| [3] |
Li Jing, Yuan Shaoqiang, Chu Xiangzhi. Dissolution behavior of the second phase in Nb-Ti microalloy steel[J]. Foundry Technology, 2017,38(9):2087−2089, 2095. (李敬, 苑少强, 褚祥治. Nb-Ti微合金钢中第二相的溶解行为[J]. 铸造技术, 2017,38(9):2087−2089, 2095.
Li Jing, Yuan Shaoqiang, Chu Xiangzhi. Dissolution behavior of the second phase in Nb-Ti microalloy steel[J]. Foundry Technology, 2017, 38(9): 2087-2089, 2095.
|
| [4] |
Zheng Y X, Wang Q, Zhu L G, et al. Microstructure evolution and carbide precipitation behavior of microalloyed TS800TB steel during hot rolling and coiling processes[J]. Materials Science and Engineering:A, 2022,840:142902. doi: 10.1016/j.msea.2022.142902
|
| [5] |
Zheng Y X, Shen W, Zhu L G, et al. Effects of composition and strain rate on hot ductility of Cr-Mo-alloy steel in the two-phase region[J]. High Temperature Materials and Processes, 2021,40(1):228−240. doi: 10.1515/htmp-2021-0025
|
| [6] |
Zheng Y X, Wang F M, Chang R. Effect of compound addition of Nb-B on hot ductility of Cr-Mo alloy steel[J]. Materials Science & Engineering A, 2018,715:194−204.
|
| [7] |
Zhang D Q, Liu G, Zhang K, et al. Effect of Nb microalloying on microstructure evolution and mechanical properties in low carbon medium manganese steel[J]. Materials Science & Engineering A, 2021,824:1−13.
|
| [8] |
Zhang K, Wang H, Sun X J, et al. Precipitation behavior and microstructural evolution of ferritic Ti-V-Mo complex microalloyed steel[J]. Acta Metallurgica Sinica (English Letters), 2018,31(9):9.
|
| [9] |
Nidhi Bansal G, Atul G, Mohit B. Effect of cold work, ageing on hardness and ultimate tensile strength of microalloyed steel[J]. Key Engineering Materials, 2022,6671:116−123.
|
| [10] |
Liu H L, Yang B, Chen Y, et al. Precipitation law of vanadium in microalloyed steel and its performance influencing factors[J]. Materials, 2022,15(22):8146−8146. doi: 10.3390/ma15228146
|
| [11] |
Pravendra Pratap S, Sadhan G, Suhrit M. Strengthening behaviour and failure analysis of hot-rolled Nb+V microalloyed steel processed at various coiling temperatures[J]. Materials Science & Engineering A, 2022,859:144210.
|
| [12] |
刘欣. 钒含量对Nb-V-Ti微合金钢析出行为及组织性能的影响[D]. 沈阳: 东北大学, 2019.
Liu Xin. Effect of vanadium content on precipitation behavior and microstructure properties of Nb-V-Ti microalloy steel[D]. Shengyang: Northeastern University, 2019.
|
| [13] |
Ni Lingling, Zhang Ke, Yuan Wenyang, et al. Effect of austenite deformation temperature on precipitation kinetics, microstructure and hardness of Ti-V composite microalloy steel[J]. Nonferrous Metals Science and Engineering, 2021,12(6):64−71. (倪玲玲, 张可, 袁文洋, 等. 奥氏体变形温度对Ti-V复合微合金钢析出动力学及组织和硬度的影响[J]. 有色金属科学与工程, 2021,12(6):64−71.
Ni Lingling, Zhang Ke, Yuan Wenyang, et al. Effect of austenite deformation temperature on precipitation kinetics, microstructure and hardness of Ti-V composite microalloy steel[J]. Nonferrous Metals Science and Engineering, 2021, 12(6): 64-71.
|
| [14] |
甘晓龙. V对Ti-Mo微合金钢第二相析出行为及组织性能的影响研究[D]. 武汉: 武汉科技大学, 2019.
Gan Xiaolong. Study on the effect of V on the second phase precipitation behavior and microstructure properties of Ti-Mo microalloy steel[D]. Wuhan: Wuhan University of Science and Technology, 2019.
|
| [15] |
Yao Na, Xing Chao. Precipitation kinetics of composite carbides in Nb-Ti-V-Mo microalloy steel[J]. Iron Steel Vanadium Titanium, 2022,43(4):142−149. (姚娜, 兴超. Nb-Ti-V-Mo微合金钢中复合碳化物的析出动力学[J]. 钢铁钒钛, 2022,43(4):142−149.
Yao Na, Xing Chao. Precipitation kinetics of composite carbides in Nb-Ti-V-Mo microalloy steel[J]. Iron Steel Vanadium Titanium, 2022, 43(4): 142-149.
|
| [16] |
Zhang Ke, Sun Xinjun, Zhang Mingya, et al. Kinetics of precipitation and precipitation of (Ti, V, Mo)C in γ/α in Ti-V-Mo composite microalloy steel[J]. Acta Metallurgical Sinica, 2018,54(8):1122−1130. (张可, 孙新军, 张明亚, 等. Ti-V-Mo复合微合金钢中(Ti, V, Mo)C在γ/α中沉淀析出的动力学[J]. 金属学报, 2018,54(8):1122−1130.
Zhang Ke, Sun Xinjun, Zhang Mingya, et al. Kinetics of precipitation and precipitation of (Ti, V, Mo)C in γ/α in Ti-V-Mo composite microalloy steel[J]. Acta Metallurgical Sinica, 2018, 54(8): 1122-1130.
|
| [17] |
杨海林. Ti-Nb微合金化高强钢强韧化机理及组织性能研究[D]. 武汉: 武汉科技大学, 2021.
Yang Hailin. Study on the toughening mechanism and microstructure properties of Ti-Nb microalloyed high-strength steel[D]. Wuhan: Wuhan University of Science and Technology, 2021.
|
| [18] |
Bu Fanzheng, Wang Yubin, Zheng Lianhui, et al. Nanocarbide precipitation behavior during tempering of Ti-Mo microalloy steel[J]. Journal of Iron and Steel Research, 2018,30(11):928−934. (卜凡征, 王玉斌, 郑连辉, 等. Ti-Mo微合金钢回火过程中纳米碳化物析出行为[J]. 钢铁研究学报, 2018,30(11):928−934.
Bu Fanzheng, Wang Yubin, Zheng Lianhui, et al. Nanocarbide precipitation behavior during tempering of Ti-Mo microalloy steel[J]. Journal of Iron and Steel Research, 2018, 30(11): 928-934.
|
| [19] |
Liu Xiang, Du Qunli, Li Xin. Effect of heating process on austenitic grain growth of Nb-Ti microalloy steel[J]. Iron and Steel, 2019,54(9):116−120, 131. (刘祥, 杜群力, 李新. 加热工艺对Nb-Ti微合金钢奥氏体晶粒长大的影响[J]. 钢铁, 2019,54(9):116−120, 131. doi: 10.13228/j.boyuan.issn0449-749x.20180424
Liu Xiang, Du Qunli, Li Xin. Effect of heating process on austenitic grain growth of Nb-Ti microalloy steel[J]. Iron and Steel, 2019, 54(9): 116-120, 131. doi: 10.13228/j.boyuan.issn0449-749x.20180424
|
| [20] |
易航. Ti-Mo-V复合微合金钢中第二相析出行为及组织性能研究[D]. 武汉: 武汉科技大学, 2020.
Yi Hang. Study on second phase precipitation behavior and microstructure properties in Ti-Mo-V composite microalloy steel[D]. Wuhan: Wuhan University of Science and Technology, 2020.
|
| [21] |
Yu Yinjun, Zhao Shiyu, Zhang Ke, et al. Effect of isothermal cooling time on microstructure transformation and hardness of Ti-V-Mo composite microalloy steel[J]. Heat Treatment of Metals, 2021,46(6):95−101. (于银俊, 赵时雨, 张可, 等. 温冷却时间对Ti-V-Mo复合微合金钢组织转变及硬度的影响[J]. 金属热处理, 2021,46(6):95−101.
Yu Yinjun, Zhao Shiyu, Zhang Ke, et al. Effect of isothermal cooling time on microstructure transformation and hardness of Ti-V-Mo composite microalloy steel[J]. Heat Treatment of Metals, 2021, 46(6): 95-101.
|
| [22] |
韩荣. Ti-V-Mo复合微合金化温成形汽车钢的强化机理研究[D]. 昆明: 昆明理工大学, 2022.
Han Rong. Study on strengthening mechanism of Ti-V-Mo composite microalloy thermoformed automotive steel[D]. Kunming: Kunming University of Science and Technology, 2022.
|
| [23] |
雍岐龙. 钢铁材料中的第二相[M]. 北京: 冶金工业出版社, 2006.
Yong Qilong. Secondary phases in steel[M]. Beijing: Metallurgical Industry Press, 2006.
|