Volume 45 Issue 2
Feb.  2024
Turn off MathJax
Article Contents
Zheng Yaxu, Yang Qin, Zhao Ziyu, Wei Cuihu, Hui Shixu, Wu Kangye. Study on the precipitation kinetics of carbides in austenite and ferrite of microalloyed steels[J]. IRON STEEL VANADIUM TITANIUM, 2024, 45(2): 139-148. doi: 10.7513/j.issn.1004-7638.2024.02.020
Citation: Zheng Yaxu, Yang Qin, Zhao Ziyu, Wei Cuihu, Hui Shixu, Wu Kangye. Study on the precipitation kinetics of carbides in austenite and ferrite of microalloyed steels[J]. IRON STEEL VANADIUM TITANIUM, 2024, 45(2): 139-148. doi: 10.7513/j.issn.1004-7638.2024.02.020

Study on the precipitation kinetics of carbides in austenite and ferrite of microalloyed steels

doi: 10.7513/j.issn.1004-7638.2024.02.020
More Information
  • Received Date: 2023-03-21
    Available Online: 2024-04-30
  • Publish Date: 2024-04-30
  • According to the solid solution thermodynamic calculation of the multi-composite precipitated phases and the classical nucleation growth kinetic theory, the deposition and precipitation of carbides in austenite (γ) and ferrite (α) phases in Ti-Mo, Ti-Nb-Mo and Ti-Nb-Mo-V composite microalloyed-steels were studied. It is shown that in γ phase, the precipitates in Ti-Mo steel are mainly Ti-enriched (Ti, Mo) C particles. In the higher temperature range, Ti-Nb-Mo and Ti-Nb-Mo-V steels mainly precipitate carbide particles enriched in Ti and Nb. In the ferritic zone, the precipitates in Ti-Mo and Ti-Nb-Mo steels are mainly Mo-enriched carbide particles, while in Ti-Nb-Mo-V steel, V-enriched carbide particles are mainly precipitated. The PTT and NrT curves of the precipitated phases in Ti-Mo and Ti-Nb-Mo steels show "C" and reverse "C" shapes, respectively, while the NrT curves of (Ti, Nb, Mo, V) C precipitated in austenite show reverse shapes "ε". As the temperature decreases, the precipitation time first decreases and then prolongs. The nucleation rate of (Ti, Nb, Mo, V) C is the fastest in the high-temperature austenitic zone, followed by (Ti, Nb, Mo) C, and that of (Ti, Mo) C is the slowest. The corresponding fastest nucleation precipitation temperature increases in sequence. In the ferritic region, the PTT and NrT curves of (Ti, Mo) C and (Ti, Nb, Mo) C are presented "ε" form and reverse "ε" shape, respectively. The nucleation rate of carbides in Ti-Nb-Mo-V steel is faster in the entire ferritic zone than in Ti-Mo and Ti-Nb-Mo steels.
  • loading
  • [1]
    Chen Zihao, Zhang Ke, Fu Xibin, et al. Effect of V content on microstructure and mechanical properties of Ti-V composite microalloy steel[J]. The Chinese Journal of Process Engineering, 2021,21(7):827−835. (陈子豪, 张可, 付锡彬, 等. V含量对Ti-V复合微合金钢组织和力学性能的影响[J]. 过程工程学报, 2021,21(7):827−835. doi: 10.12034/j.issn.1009-606X.221107

    Chen Zihao, Zhang Ke, Fu Xibin, et al. Effect of V content on microstructure and mechanical properties of Ti-V composite microalloy steel[J]. The Chinese Journal of Process Engineering, 2021, 21(7): 827-835. doi: 10.12034/j.issn.1009-606X.221107
    [2]
    Zhou Dan, Chai Xiyang, Liang Fengrui, et al. Effects of V, V-N and V-Nb microalloying on microstructure and properties of high-strength ship plate steel[J]. Heat Treatment of Metals, 2019,44(6):60−64. (周丹, 柴希阳, 梁丰瑞, 等. V、V-N与V-Nb微合金化对高强船板钢组织与性能的影响[J]. 金属热处理, 2019,44(6):60−64.

    Zhou Dan, Chai Xiyang, Liang Fengrui, et al. Effects of V, V-N and V-Nb microalloying on microstructure and properties of high-strength ship plate steel[J]. Heat Treatment of Metals, 2019, 44(6): 60-64.
    [3]
    Li Jing, Yuan Shaoqiang, Chu Xiangzhi. Dissolution behavior of the second phase in Nb-Ti microalloy steel[J]. Foundry Technology, 2017,38(9):2087−2089, 2095. (李敬, 苑少强, 褚祥治. Nb-Ti微合金钢中第二相的溶解行为[J]. 铸造技术, 2017,38(9):2087−2089, 2095.

    Li Jing, Yuan Shaoqiang, Chu Xiangzhi. Dissolution behavior of the second phase in Nb-Ti microalloy steel[J]. Foundry Technology, 2017, 38(9): 2087-2089, 2095.
    [4]
    Zheng Y X, Wang Q, Zhu L G, et al. Microstructure evolution and carbide precipitation behavior of microalloyed TS800TB steel during hot rolling and coiling processes[J]. Materials Science and Engineering:A, 2022,840:142902. doi: 10.1016/j.msea.2022.142902
    [5]
    Zheng Y X, Shen W, Zhu L G, et al. Effects of composition and strain rate on hot ductility of Cr-Mo-alloy steel in the two-phase region[J]. High Temperature Materials and Processes, 2021,40(1):228−240. doi: 10.1515/htmp-2021-0025
    [6]
    Zheng Y X, Wang F M, Chang R. Effect of compound addition of Nb-B on hot ductility of Cr-Mo alloy steel[J]. Materials Science & Engineering A, 2018,715:194−204.
    [7]
    Zhang D Q, Liu G, Zhang K, et al. Effect of Nb microalloying on microstructure evolution and mechanical properties in low carbon medium manganese steel[J]. Materials Science & Engineering A, 2021,824:1−13.
    [8]
    Zhang K, Wang H, Sun X J, et al. Precipitation behavior and microstructural evolution of ferritic Ti-V-Mo complex microalloyed steel[J]. Acta Metallurgica Sinica (English Letters), 2018,31(9):9.
    [9]
    Nidhi Bansal G, Atul G, Mohit B. Effect of cold work, ageing on hardness and ultimate tensile strength of microalloyed steel[J]. Key Engineering Materials, 2022,6671:116−123.
    [10]
    Liu H L, Yang B, Chen Y, et al. Precipitation law of vanadium in microalloyed steel and its performance influencing factors[J]. Materials, 2022,15(22):8146−8146. doi: 10.3390/ma15228146
    [11]
    Pravendra Pratap S, Sadhan G, Suhrit M. Strengthening behaviour and failure analysis of hot-rolled Nb+V microalloyed steel processed at various coiling temperatures[J]. Materials Science & Engineering A, 2022,859:144210.
    [12]
    刘欣. 钒含量对Nb-V-Ti微合金钢析出行为及组织性能的影响[D]. 沈阳: 东北大学, 2019.

    Liu Xin. Effect of vanadium content on precipitation behavior and microstructure properties of Nb-V-Ti microalloy steel[D]. Shengyang: Northeastern University, 2019.
    [13]
    Ni Lingling, Zhang Ke, Yuan Wenyang, et al. Effect of austenite deformation temperature on precipitation kinetics, microstructure and hardness of Ti-V composite microalloy steel[J]. Nonferrous Metals Science and Engineering, 2021,12(6):64−71. (倪玲玲, 张可, 袁文洋, 等. 奥氏体变形温度对Ti-V复合微合金钢析出动力学及组织和硬度的影响[J]. 有色金属科学与工程, 2021,12(6):64−71.

    Ni Lingling, Zhang Ke, Yuan Wenyang, et al. Effect of austenite deformation temperature on precipitation kinetics, microstructure and hardness of Ti-V composite microalloy steel[J]. Nonferrous Metals Science and Engineering, 2021, 12(6): 64-71.
    [14]
    甘晓龙. V对Ti-Mo微合金钢第二相析出行为及组织性能的影响研究[D]. 武汉: 武汉科技大学, 2019.

    Gan Xiaolong. Study on the effect of V on the second phase precipitation behavior and microstructure properties of Ti-Mo microalloy steel[D]. Wuhan: Wuhan University of Science and Technology, 2019.
    [15]
    Yao Na, Xing Chao. Precipitation kinetics of composite carbides in Nb-Ti-V-Mo microalloy steel[J]. Iron Steel Vanadium Titanium, 2022,43(4):142−149. (姚娜, 兴超. Nb-Ti-V-Mo微合金钢中复合碳化物的析出动力学[J]. 钢铁钒钛, 2022,43(4):142−149.

    Yao Na, Xing Chao. Precipitation kinetics of composite carbides in Nb-Ti-V-Mo microalloy steel[J]. Iron Steel Vanadium Titanium, 2022, 43(4): 142-149.
    [16]
    Zhang Ke, Sun Xinjun, Zhang Mingya, et al. Kinetics of precipitation and precipitation of (Ti, V, Mo)C in γ/α in Ti-V-Mo composite microalloy steel[J]. Acta Metallurgical Sinica, 2018,54(8):1122−1130. (张可, 孙新军, 张明亚, 等. Ti-V-Mo复合微合金钢中(Ti, V, Mo)C在γ/α中沉淀析出的动力学[J]. 金属学报, 2018,54(8):1122−1130.

    Zhang Ke, Sun Xinjun, Zhang Mingya, et al. Kinetics of precipitation and precipitation of (Ti, V, Mo)C in γ/α in Ti-V-Mo composite microalloy steel[J]. Acta Metallurgical Sinica, 2018, 54(8): 1122-1130.
    [17]
    杨海林. Ti-Nb微合金化高强钢强韧化机理及组织性能研究[D]. 武汉: 武汉科技大学, 2021.

    Yang Hailin. Study on the toughening mechanism and microstructure properties of Ti-Nb microalloyed high-strength steel[D]. Wuhan: Wuhan University of Science and Technology, 2021.
    [18]
    Bu Fanzheng, Wang Yubin, Zheng Lianhui, et al. Nanocarbide precipitation behavior during tempering of Ti-Mo microalloy steel[J]. Journal of Iron and Steel Research, 2018,30(11):928−934. (卜凡征, 王玉斌, 郑连辉, 等. Ti-Mo微合金钢回火过程中纳米碳化物析出行为[J]. 钢铁研究学报, 2018,30(11):928−934.

    Bu Fanzheng, Wang Yubin, Zheng Lianhui, et al. Nanocarbide precipitation behavior during tempering of Ti-Mo microalloy steel[J]. Journal of Iron and Steel Research, 2018, 30(11): 928-934.
    [19]
    Liu Xiang, Du Qunli, Li Xin. Effect of heating process on austenitic grain growth of Nb-Ti microalloy steel[J]. Iron and Steel, 2019,54(9):116−120, 131. (刘祥, 杜群力, 李新. 加热工艺对Nb-Ti微合金钢奥氏体晶粒长大的影响[J]. 钢铁, 2019,54(9):116−120, 131. doi: 10.13228/j.boyuan.issn0449-749x.20180424

    Liu Xiang, Du Qunli, Li Xin. Effect of heating process on austenitic grain growth of Nb-Ti microalloy steel[J]. Iron and Steel, 2019, 54(9): 116-120, 131. doi: 10.13228/j.boyuan.issn0449-749x.20180424
    [20]
    易航. Ti-Mo-V复合微合金钢中第二相析出行为及组织性能研究[D]. 武汉: 武汉科技大学, 2020.

    Yi Hang. Study on second phase precipitation behavior and microstructure properties in Ti-Mo-V composite microalloy steel[D]. Wuhan: Wuhan University of Science and Technology, 2020.
    [21]
    Yu Yinjun, Zhao Shiyu, Zhang Ke, et al. Effect of isothermal cooling time on microstructure transformation and hardness of Ti-V-Mo composite microalloy steel[J]. Heat Treatment of Metals, 2021,46(6):95−101. (于银俊, 赵时雨, 张可, 等. 温冷却时间对Ti-V-Mo复合微合金钢组织转变及硬度的影响[J]. 金属热处理, 2021,46(6):95−101.

    Yu Yinjun, Zhao Shiyu, Zhang Ke, et al. Effect of isothermal cooling time on microstructure transformation and hardness of Ti-V-Mo composite microalloy steel[J]. Heat Treatment of Metals, 2021, 46(6): 95-101.
    [22]
    韩荣. Ti-V-Mo复合微合金化温成形汽车钢的强化机理研究[D]. 昆明: 昆明理工大学, 2022.

    Han Rong. Study on strengthening mechanism of Ti-V-Mo composite microalloy thermoformed automotive steel[D]. Kunming: Kunming University of Science and Technology, 2022.
    [23]
    雍岐龙. 钢铁材料中的第二相[M]. 北京: 冶金工业出版社, 2006.

    Yong Qilong. Secondary phases in steel[M]. Beijing: Metallurgical Industry Press, 2006.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(6)

    Article Metrics

    Article views (625) PDF downloads(25) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return