| Citation: | Gu Meirong, Cao Yanfeng, Peng Lingling, Yu Hongxing, Ou Ping, Wang Hebin, Li Chengbo, Liu Xiaoming, Rong Sheng, Li Ling. Study on characteristics of hot deformation in Super304H austenitic heat-resistant steel[J]. IRON STEEL VANADIUM TITANIUM, 2024, 45(2): 162-170. doi: 10.7513/j.issn.1004-7638.2024.02.023 |
| [1] |
Dong Guoshen. Development of ultra supercritical coal-fired power generation technology[J]. Internal Combustion Engine and Parts, 2017,(18):140−142. (董国燊. 超超临界燃煤发电技术的发展[J]. 内燃机与配件, 2017,(18):140−142. doi: 10.19475/j.cnki.issn1674-957x.2017.18.083
Dong Guoshen. Development of ultra supercritical coal-fired power generation technology[J]. Internal Combustion Engine and Parts, 2017, (18): 140-142. doi: 10.19475/j.cnki.issn1674-957x.2017.18.083
|
| [2] |
Wang Qian, Wang Weiliang, Liu Min, et al. Development and prospect of (ultra) supercritical coal-fired power generation technology[J]. Thermal Power Generation, 2021,50(2):1−9. (王倩, 王卫良, 刘敏, 等. 超(超)临界燃煤发电技术发展与展望[J]. 热力发电, 2021,50(2):1−9. doi: 10.19666/j.rlfd.202007179
Wang Qian, Wang Weiliang, Liu Min, et al. Development and prospect of (ultra) supercritical coal-fired power generation technology[J]. Thermal Power Generation, 2021, 50(2): 1-9. doi: 10.19666/j.rlfd.202007179
|
| [3] |
Sawaragi Y, Hirano S. Mechanical behaviour of materials[M]. Jono M, Inone T (Eds. ). New York: Pergamon Press, 1992: 589-594.
|
| [4] |
Viswanathan R, Henry J F, Tanzosh J, et al. U. S. program on materials technology for ultra-supercritical coal power plants[J]. Journal of Materials Engineering and Performance, 2005,14(3):281−292. doi: 10.1361/10599490524039
|
| [5] |
Wu Yue. Microstructure and mechanical properties of Super304H superheater steel tube in service[J]. Heat Treatment of Metals, 2022,47(11):205−210. (吴跃. 服役态Super304H过热器钢管显微组织及力学性能[J]. 金属热处理, 2022,47(11):205−210.
Wu Yue. Microstructure and mechanical properties of Super304 H superheater steel tube in service[J]. Heat Treatment of Metals, 2022, 47(11): 205-210.
|
| [6] |
Ou Ping, Sun Jian, Cui Zhengqiang, et al. Microstructure of Super304H austenitic heat-resistant steel after long-term aging[J]. Heat Treatment of Materials, 2014,35(5):85−91. (欧平, 孙坚, 崔正强, 等. Super304H奥氏体耐热钢时效后的组织结构[J]. 材料热处理学报, 2014,35(5):85−91.
Ou Ping, Sun Jian, Cui Zhengqiang, et al. Microstructure of Super304 H austenitic heat-resistant steel after long-term aging[J]. Heat Treatment of Materials, 2014, 35(5): 85-91.
|
| [7] |
Ou P, Xing H, Sun J. Precipitation of nanosized MX at coherent Cu-rich phases in Super304H austenitic steel[J]. Metallurgical and Materials Transactions A, 2015,46(1):1−5. doi: 10.1007/s11661-014-2628-z
|
| [8] |
Liu Tianzuo, Wei Yuzhong, Ma Qinzheng, et al. Quantitative analysis on evolution of precipitates in Super304H steel during aging at 650 ℃[J]. Heat Treatment of Metals, 2019,44(12):232−237. (刘天佐, 魏玉忠, 马芹征, 等. Super304H钢650 ℃时效过程中析出相演化的定量分析[J]. 金属热处理, 2019,44(12):232−237.
Liu Tianzuo, Wei Yuzhong, Ma Qinzheng, et al. Quantitative analysis on evolution of precipitates in Super304 H steel during aging at 650 ℃[J]. Heat Treatment of Metals, 2019, 44(12): 232-237.
|
| [9] |
Chi C Y, Yu H Y, Dong J X, et al. The precipitation strengthening behavior of Cu-rich phase in Nb contained advanced Fe-Cr-Ni type austenitic heat resistant steel for USC power plant application[J]. Progress in Natural Science:Materials International, 2012,22(3):175−185. doi: 10.1016/j.pnsc.2012.05.002
|
| [10] |
Liu Junjian, Liu Run, Wang Wanli, et al. Effect of abnormal grain growth on mechanical properties of serviced Super304H steel tube[J]. Transactions of Materials and Heat Treatment, 2021,42(4):125−131. (刘俊建, 刘润, 王万里, 等. 晶粒异常长大对服役Super304H管力学性能的影响[J]. 材料热处理学报, 2021,42(4):125−131.
Liu Junjian, Liu Run, Wang Wanli, et al. Effect of abnormal grain growth on mechanical properties of serviced Super304 H steel tube[J]. Transactions of Materials and Heat Treatment, 2021, 42(4): 125-131.
|
| [11] |
Ou P, Xing H, Wang X L, et al. Tensile yield behavior and precipitation strengthening mechanism in Super304H steel[J]. Materials Science and Engineering:A, 2014,600:171−175. doi: 10.1016/j.msea.2014.01.085
|
| [12] |
Ou P, Li L, Xie X F, et al. Steady-state creep behavior of Super304H austenitic steel at elevated temperatures[J]. Acta Metallurgica Sinica (English Letters), 2015,28(11):1336−1343. doi: 10.1007/s40195-015-0331-8
|
| [13] |
Zhang Y T, Yuan T B, Shao Y W, et al. Investigation of creep degradation in a Super304H austenitic steel and its nonlinear ultrasonic assessment method[J]. Materials at High Temperatures, 2022,39(2):167−180. doi: 10.1080/09603409.2022.2040183
|
| [14] |
Bai Jiawei, Zhan Qian, Chi Chengyu, et al. Strengthening effect of precipitate phase in Super304H austenitic heat-resistant steel after long-term aging[J]. The Chinese Journal of Nonferrous Metals, 2014,24(12):3042−3050. (白嘉伟, 詹倩, 迟成宇, 等. 长时时效后Super304H奥氏体热强钢中析出相的强化效应[J]. 中国有色金属学报, 2014,24(12):3042−3050.
Bai Jiawei, Zhan Qian, Chi Chengyu, et al. Strengthening effect of precipitate phase in Super304 H austenitic heat-resistant steel after long-term aging[J]. The Chinese Journal of Nonferrous Metals, 2014, 24(12): 3042-3050.
|
| [15] |
Sun Xian. Effect of weld metals on weldability of Super304H austenitic heat resistant steel[J]. Electric Welding Machine, 2021,51(3):37−46. (孙咸. 焊缝金属对Super304H奥氏体耐热钢焊接性的影响[J]. 电焊机, 2021,51(3):37−46.
Sun Xian. Effect of weld metals on weldability of Super304 H austenitic heat resistant steel[J]. Electric Welding Machine, 2021, 51(3): 37-46.
|
| [16] |
Wang Lin, Li Changshan. Cracking causes and treatment measures of T92/Super304H dissimilar steel welded joint[J]. Corrosion and Protection, 2022,43(3):68−73. (王林, 李常山. T92/Super304H异种钢焊接接头开裂的原因及处理措施[J]. 腐蚀与防护, 2022,43(3):68−73. doi: 10.11973/fsyfh-202203011
Wang Lin, Li Changshan. Cracking causes and treatment measures of T92/Super 304 H dissimilar steel welded joint[J]. Corrosion and Protection, 2022, 43(3): 68-73. doi: 10.11973/fsyfh-202203011
|
| [17] |
Zhang Zhongwen, Li Xinmei, Du Baoshuai, et al. Aging microstructure and creep rupture properties of Super304H steel welded joint[J]. Materials for Mechanical Engineering, 2018,42(11):62−66. (张忠文, 李新梅, 杜宝帅, 等. Super304H钢焊接接头的时效组织及其持久性能[J]. 机械工程材料, 2018,42(11):62−66.
Zhang Zhongwen, Li Xinmei, Du Baoshuai, et al. Aging microstructure and creep rupture properties of super304 H steel welded joint[J]. Materials for Mechanical Engineering, 2018, 42(11): 62-66.
|
| [18] |
Kumar R, Varma A, Kumar Y R, et al. Enhancement of mechanical properties through modified post-weld heat treatment processes of T91 and Super304H dissimilar welded joint[J]. Journal of Manufacturing Processes, 2022,78:59−70. doi: 10.1016/j.jmapro.2022.04.008
|
| [19] |
Li Lingxiao, Zhao Yanjun, Zhang Jingrui, et al. High temperature oxidation resistance of Super304H austenitic stainless steel[J]. Heat Treatment of Metals, 2023,48(1):80−86. (李凌霄, 赵艳君, 张敬瑞, 等. Super304H奥氏体不锈钢的高温抗氧化性能[J]. 金属热处理, 2023,48(1):80−86.
Li Lingxiao, Zhao Yanjun, Zhang Jingrui, et al. High temperature oxidation resistance of super304 H austenitic stainless steel[J]. Heat Treatment of Metals, 2023, 48(1): 80-86.
|
| [20] |
Gao Y, Zhang C L, Xiong X H, et al. Intergranular corrosion susceptibility of a novel Super304H stainless steel[J]. Engineering Failure Analysis, 2012,24:26−32. doi: 10.1016/j.engfailanal.2012.03.004
|
| [21] |
Luo C, Liu H D, Wan Q, et al. Effect of fast multiple rotation rolling on the oxidation resistance of Super304H stainless steel in high-temperature water vapor[J]. Oxidation of Metals, 2015,84(3-4):259−268. doi: 10.1007/s11085-015-9553-4
|
| [22] |
Wang Xiaolong, Wang Yongdong, Liu Junjie, et al. High temperature corrosion experiment on T91 and Super304H steel materials[J]. Clean Coal Technology, 2022,28(5):182−188. (王小龙, 王永东, 刘俊杰, 等. T91和Super304H钢材料高温腐蚀试验[J]. 洁净煤技术, 2022,28(5):182−188.
Wang Xiaolong, Wang Yongdong, Liu Junjie, et al. High temperature corrosion experiment on T91 and Super304 H steel materials[J]. Clean Coal Technology, 2022, 28(5): 182-188.
|
| [23] |
Xu Hong, Liang Zhiyuan, Ding Jianliang, et al. Study on high temperature corrosion resistance of domestic Super304H heat resistant steel in real furnace[J]. Hot Working Technology, 2017,46(24):63−66. (徐洪, 梁志远, 丁建良, 等. 国产Super304H耐热钢实炉高温腐蚀性能研究[J]. 热加工工艺, 2017,46(24):63−66.
Xu Hong, Liang Zhiyuan, Ding Jianliang, et al. Study on high temperature corrosion resistance of domestic Super304 H heat resistant steel in real furnace[J]. Hot Working Technology, 2017, 46(24): 63-66.
|
| [24] |
Schoeck G. The activation energy of dislocation movement[J]. Physica Status Solidi, 1965,8(2):499−507. doi: 10.1002/pssb.19650080209
|
| [25] |
Sellars C M, Mctegart W J. On the mechanism of hot deformation[J]. Acta Metallurgic, 1966,14(9):1136−1138. doi: 10.1016/0001-6160(66)90207-0
|
| [26] |
Mandal S, Rakesh V, Sivaprasad P V, et al. Constitutive equations to predict high temperature flow stress in a Ti-modified austenitic stainless steel[J]. Materials Science and Engineering:A, 2009,500(1-2):114−121. doi: 10.1016/j.msea.2008.09.019
|
| [27] |
Wu Yiming, Wang Yan, Zhang Minghe, et al. Constitutive model and hot processing maps of Fe-10Mn-2Al-0.1C medium Mn steel[J]. Materials for Mechanical Engineering, 2022,46(9):82−88. (吴翼铭, 王 焱, 张明赫, 等. Fe-10Mn-2Al-0.1C中锰钢的本构模型与热加工图[J]. 机械工程材料, 2022,46(9):82−88.
Wu Yiming, Wang Yan, Zhang Minghe, et al. Constitutive model and hot processing maps of Fe-10 Mn-2 Al-0.1 C medium Mn steel[J]. Materials for Mechanical Engineering, 2022, 46(9): 82-88.
|
| [28] |
Sun Chaoyang, Luan Jingdong, Liu Geng, et al. Predicted constitutive modeling of hot deformation for AZ31 magnesium alloy[J]. Acta Metallurgica Sinica, 2012,48(7):853−860. (孙朝阳, 栾京东, 刘赓, 等. AZ31镁合金热变形流动应力预测模型[J]. 金属学报, 2012,48(7):853−860.
Sun Chaoyang, Luan Jingdong, Liu Geng, et al. Predicted constitutive modeling of hot deformation for AZ31 magnesium alloy[J]. Acta Metallurgica Sinica, 2012, 48(7): 853-860.
|
| [29] |
Dong Xiaofeng, Wang Guanjun, Zhang Mingyu, et al. Study on high-temperature tensile deformation behavior of TA9 titanium alloy[J]. Iron Steel Vanadium Titanium, 2023,44(2):77−83. (董晓锋, 王冠军, 张明玉, 等. TA9钛合金高温拉伸变形行为的研究[J]. 钢铁钒钛, 2023,44(2):77−83. doi: 10.7513/j.issn.1004-7638.2023.02.011
Dong Xiaofeng, Wang Guanjun, Zhang Mingyu, et al. Study on high-temperature tensile deformation behavior of TA9 titanium alloy[J]. Iron Steel Vanadium Titanium, 2023, 44(2): 77-83. doi: 10.7513/j.issn.1004-7638.2023.02.011
|
| [30] |
Medina S F, Hernandez C A. General expression of the Zener-Hollomon parameter as a function of the chemical composition of low alloy and microalloyed steels[J]. Acta Materialia, 1996,44(1):137−148. doi: 10.1016/1359-6454(95)00151-0
|
| [31] |
Zhu Shaozhen, Wang Jie. Constitutive relationship analysis and microstructural evolution of biomedical Ni-Ti alloy during warm deformation[J]. Iron Steel Vanadium Titanium, 2022,43(6):51−57. (朱绍珍, 王杰. 医用镍钛合金温变形过程中的本构关系和组织演变[J]. 钢铁钒钛, 2022,43(6):51−57.
Zhu Shaozhen, Wang Jie. Constitutive relationship analysis and microstructural evolution of biomedical Ni-Ti alloy during warm deformation[J]. Iron Steel Vanadium Titanium, 2022, 43(6): 51-57.
|
| [32] |
Wang K, Wen D X, Li J J, et al. Hot deformation behaviors of low-alloyed ultrahigh strength steel 30CrMnSiNi2A: Microstructure evolution and constitutive modeling[J]. Materials Today Communications, 2021,26:102009. doi: 10.1016/j.mtcomm.2021.102009
|
| [33] |
Prasad Y V R K, Gegelh L, Doraivelu S M, et al. Modeling of dynamic material behavior in hot deformation: Forging of Ti-6242[J]. Metallurgical Transactions A, 1984,15(10):1883−1892. doi: 10.1007/BF02664902
|
| [34] |
Prasad Y V R K, Seshacharvulu T. Modelling of hot deformation for microstructural control[J]. Metallurgical Reviews, 1998,43(6):243−258. doi: 10.1179/imr.1998.43.6.243
|
| [35] |
Prasad Y V R K, Rao K P. Processing maps and rate controlling mechanisms of hot deformation of electrolytic tough pitch copper in the temperature range 300-950 ℃[J]. Materials Science and Engineering A, 2005,391(1-2):141−150. doi: 10.1016/j.msea.2004.08.049
|
| [36] |
Medeiros S C, Frazier W G, Prasad Y V R K. Hot deformation mechanisms in a powder metallurgy nickel-base superalloy IN 625[J]. Metallurgical and Materials Transactions A, 2000,31(9):2317−2325. doi: 10.1007/s11661-000-0147-6
|
| [37] |
Kang Fuwei, Sun Jianfei, Zhang Guoqing, et al. Characteristics of hot compression deformation and microstructure evolution of spray formed nickel base superalloy[J]. Acta Metallurgica Sinica, 2007,43(10):1053−1058. (康福伟, 孙剑飞, 张国庆, 等. 喷射成形镍基高温合金热变形特性及微观组织变化[J]. 金属学报, 2007,43(10):1053−1058.
Kang Fuwei, Sun Jianfei, Zhang Guoqing, et al. Characteristics of hot compression deformation and microstructure evolution of spray formed nickel base superalloy[J]. Acta Metallurgica Sinica, 2007, 43(10): 1053-1058.
|
| [38] |
Guo Haiting, Deng Lei, Wang Xinyun. Research on the deformation behavior of 6061 aluminum alloy based on processing map[J]. Journal of Netshape Forming Engineering, 2011,3(6):6−8. (郭海廷, 邓磊, 王新云. 基于热加工图的铝合金6061变形行为研究[J]. 精密成形工程, 2011,3(6):6−8.
Guo Haiting, Deng Lei, Wang Xinyun. Research on the deformation behavior of 6061 aluminum alloy based on processing map[J]. Journal of Netshape Forming Engineering, 2011, 3(6): 6-8.
|
| [39] |
Cepeda-Jiménez C M, Ruano O A, Carsí M, et al. Study of hot deformation of an Al–Cu–Mg alloy using processing maps and microstructural characterization[J]. Materials Science and Engineering:A, 2012,552:530−539. doi: 10.1016/j.msea.2012.05.082
|