Volume 45 Issue 2
Feb.  2024
Turn off MathJax
Article Contents
Gu Meirong, Cao Yanfeng, Peng Lingling, Yu Hongxing, Ou Ping, Wang Hebin, Li Chengbo, Liu Xiaoming, Rong Sheng, Li Ling. Study on characteristics of hot deformation in Super304H austenitic heat-resistant steel[J]. IRON STEEL VANADIUM TITANIUM, 2024, 45(2): 162-170. doi: 10.7513/j.issn.1004-7638.2024.02.023
Citation: Gu Meirong, Cao Yanfeng, Peng Lingling, Yu Hongxing, Ou Ping, Wang Hebin, Li Chengbo, Liu Xiaoming, Rong Sheng, Li Ling. Study on characteristics of hot deformation in Super304H austenitic heat-resistant steel[J]. IRON STEEL VANADIUM TITANIUM, 2024, 45(2): 162-170. doi: 10.7513/j.issn.1004-7638.2024.02.023

Study on characteristics of hot deformation in Super304H austenitic heat-resistant steel

doi: 10.7513/j.issn.1004-7638.2024.02.023
More Information
  • Received Date: 2023-06-26
    Available Online: 2024-04-30
  • Publish Date: 2024-04-30
  • Hot compression test of Super304H austenitic steel was carried out by using a MMS-100 thermal mechanical simulator at 900~1200 ℃ and 0.1~10 s−1. Based on the true stress-true strain test data, the Zener-Hollomon constitutive model of the studied steel was established by using a strain compensation method, and the hot processing maps under a true strain range of 0.02~0.7 was drawn according to the dynamic material theory. The results show that high temperature and low strain rate are conducive to the occurrence of dynamic recrystallization in Super304H austenitic steel during the hot deformation process. The correlation coefficient and average relative error between the values of flow stress predicted by the constitutive model and experimental values are 0.989 and 7.007%, respectively, reflecting that the established model is relatively accurate and can be used to predict the flow behavior of Super304H austenitic steel under hot compression. Super304H austenitic steel will have a good hot-working stability after deformation reaching a certain degree. The optimal hot working parameter ranges of Super304H austenitic steel determined by the hot processing maps are 1160~1200 ℃/0.1~0.55 s−1.
  • loading
  • [1]
    Dong Guoshen. Development of ultra supercritical coal-fired power generation technology[J]. Internal Combustion Engine and Parts, 2017,(18):140−142. (董国燊. 超超临界燃煤发电技术的发展[J]. 内燃机与配件, 2017,(18):140−142. doi: 10.19475/j.cnki.issn1674-957x.2017.18.083

    Dong Guoshen. Development of ultra supercritical coal-fired power generation technology[J]. Internal Combustion Engine and Parts, 2017, (18): 140-142. doi: 10.19475/j.cnki.issn1674-957x.2017.18.083
    [2]
    Wang Qian, Wang Weiliang, Liu Min, et al. Development and prospect of (ultra) supercritical coal-fired power generation technology[J]. Thermal Power Generation, 2021,50(2):1−9. (王倩, 王卫良, 刘敏, 等. 超(超)临界燃煤发电技术发展与展望[J]. 热力发电, 2021,50(2):1−9. doi: 10.19666/j.rlfd.202007179

    Wang Qian, Wang Weiliang, Liu Min, et al. Development and prospect of (ultra) supercritical coal-fired power generation technology[J]. Thermal Power Generation, 2021, 50(2): 1-9. doi: 10.19666/j.rlfd.202007179
    [3]
    Sawaragi Y, Hirano S. Mechanical behaviour of materials[M]. Jono M, Inone T (Eds. ). New York: Pergamon Press, 1992: 589-594.
    [4]
    Viswanathan R, Henry J F, Tanzosh J, et al. U. S. program on materials technology for ultra-supercritical coal power plants[J]. Journal of Materials Engineering and Performance, 2005,14(3):281−292. doi: 10.1361/10599490524039
    [5]
    Wu Yue. Microstructure and mechanical properties of Super304H superheater steel tube in service[J]. Heat Treatment of Metals, 2022,47(11):205−210. (吴跃. 服役态Super304H过热器钢管显微组织及力学性能[J]. 金属热处理, 2022,47(11):205−210.

    Wu Yue. Microstructure and mechanical properties of Super304 H superheater steel tube in service[J]. Heat Treatment of Metals, 2022, 47(11): 205-210.
    [6]
    Ou Ping, Sun Jian, Cui Zhengqiang, et al. Microstructure of Super304H austenitic heat-resistant steel after long-term aging[J]. Heat Treatment of Materials, 2014,35(5):85−91. (欧平, 孙坚, 崔正强, 等. Super304H奥氏体耐热钢时效后的组织结构[J]. 材料热处理学报, 2014,35(5):85−91.

    Ou Ping, Sun Jian, Cui Zhengqiang, et al. Microstructure of Super304 H austenitic heat-resistant steel after long-term aging[J]. Heat Treatment of Materials, 2014, 35(5): 85-91.
    [7]
    Ou P, Xing H, Sun J. Precipitation of nanosized MX at coherent Cu-rich phases in Super304H austenitic steel[J]. Metallurgical and Materials Transactions A, 2015,46(1):1−5. doi: 10.1007/s11661-014-2628-z
    [8]
    Liu Tianzuo, Wei Yuzhong, Ma Qinzheng, et al. Quantitative analysis on evolution of precipitates in Super304H steel during aging at 650 ℃[J]. Heat Treatment of Metals, 2019,44(12):232−237. (刘天佐, 魏玉忠, 马芹征, 等. Super304H钢650 ℃时效过程中析出相演化的定量分析[J]. 金属热处理, 2019,44(12):232−237.

    Liu Tianzuo, Wei Yuzhong, Ma Qinzheng, et al. Quantitative analysis on evolution of precipitates in Super304 H steel during aging at 650 ℃[J]. Heat Treatment of Metals, 2019, 44(12): 232-237.
    [9]
    Chi C Y, Yu H Y, Dong J X, et al. The precipitation strengthening behavior of Cu-rich phase in Nb contained advanced Fe-Cr-Ni type austenitic heat resistant steel for USC power plant application[J]. Progress in Natural Science:Materials International, 2012,22(3):175−185. doi: 10.1016/j.pnsc.2012.05.002
    [10]
    Liu Junjian, Liu Run, Wang Wanli, et al. Effect of abnormal grain growth on mechanical properties of serviced Super304H steel tube[J]. Transactions of Materials and Heat Treatment, 2021,42(4):125−131. (刘俊建, 刘润, 王万里, 等. 晶粒异常长大对服役Super304H管力学性能的影响[J]. 材料热处理学报, 2021,42(4):125−131.

    Liu Junjian, Liu Run, Wang Wanli, et al. Effect of abnormal grain growth on mechanical properties of serviced Super304 H steel tube[J]. Transactions of Materials and Heat Treatment, 2021, 42(4): 125-131.
    [11]
    Ou P, Xing H, Wang X L, et al. Tensile yield behavior and precipitation strengthening mechanism in Super304H steel[J]. Materials Science and Engineering:A, 2014,600:171−175. doi: 10.1016/j.msea.2014.01.085
    [12]
    Ou P, Li L, Xie X F, et al. Steady-state creep behavior of Super304H austenitic steel at elevated temperatures[J]. Acta Metallurgica Sinica (English Letters), 2015,28(11):1336−1343. doi: 10.1007/s40195-015-0331-8
    [13]
    Zhang Y T, Yuan T B, Shao Y W, et al. Investigation of creep degradation in a Super304H austenitic steel and its nonlinear ultrasonic assessment method[J]. Materials at High Temperatures, 2022,39(2):167−180. doi: 10.1080/09603409.2022.2040183
    [14]
    Bai Jiawei, Zhan Qian, Chi Chengyu, et al. Strengthening effect of precipitate phase in Super304H austenitic heat-resistant steel after long-term aging[J]. The Chinese Journal of Nonferrous Metals, 2014,24(12):3042−3050. (白嘉伟, 詹倩, 迟成宇, 等. 长时时效后Super304H奥氏体热强钢中析出相的强化效应[J]. 中国有色金属学报, 2014,24(12):3042−3050.

    Bai Jiawei, Zhan Qian, Chi Chengyu, et al. Strengthening effect of precipitate phase in Super304 H austenitic heat-resistant steel after long-term aging[J]. The Chinese Journal of Nonferrous Metals, 2014, 24(12): 3042-3050.
    [15]
    Sun Xian. Effect of weld metals on weldability of Super304H austenitic heat resistant steel[J]. Electric Welding Machine, 2021,51(3):37−46. (孙咸. 焊缝金属对Super304H奥氏体耐热钢焊接性的影响[J]. 电焊机, 2021,51(3):37−46.

    Sun Xian. Effect of weld metals on weldability of Super304 H austenitic heat resistant steel[J]. Electric Welding Machine, 2021, 51(3): 37-46.
    [16]
    Wang Lin, Li Changshan. Cracking causes and treatment measures of T92/Super304H dissimilar steel welded joint[J]. Corrosion and Protection, 2022,43(3):68−73. (王林, 李常山. T92/Super304H异种钢焊接接头开裂的原因及处理措施[J]. 腐蚀与防护, 2022,43(3):68−73. doi: 10.11973/fsyfh-202203011

    Wang Lin, Li Changshan. Cracking causes and treatment measures of T92/Super 304 H dissimilar steel welded joint[J]. Corrosion and Protection, 2022, 43(3): 68-73. doi: 10.11973/fsyfh-202203011
    [17]
    Zhang Zhongwen, Li Xinmei, Du Baoshuai, et al. Aging microstructure and creep rupture properties of Super304H steel welded joint[J]. Materials for Mechanical Engineering, 2018,42(11):62−66. (张忠文, 李新梅, 杜宝帅, 等. Super304H钢焊接接头的时效组织及其持久性能[J]. 机械工程材料, 2018,42(11):62−66.

    Zhang Zhongwen, Li Xinmei, Du Baoshuai, et al. Aging microstructure and creep rupture properties of super304 H steel welded joint[J]. Materials for Mechanical Engineering, 2018, 42(11): 62-66.
    [18]
    Kumar R, Varma A, Kumar Y R, et al. Enhancement of mechanical properties through modified post-weld heat treatment processes of T91 and Super304H dissimilar welded joint[J]. Journal of Manufacturing Processes, 2022,78:59−70. doi: 10.1016/j.jmapro.2022.04.008
    [19]
    Li Lingxiao, Zhao Yanjun, Zhang Jingrui, et al. High temperature oxidation resistance of Super304H austenitic stainless steel[J]. Heat Treatment of Metals, 2023,48(1):80−86. (李凌霄, 赵艳君, 张敬瑞, 等. Super304H奥氏体不锈钢的高温抗氧化性能[J]. 金属热处理, 2023,48(1):80−86.

    Li Lingxiao, Zhao Yanjun, Zhang Jingrui, et al. High temperature oxidation resistance of super304 H austenitic stainless steel[J]. Heat Treatment of Metals, 2023, 48(1): 80-86.
    [20]
    Gao Y, Zhang C L, Xiong X H, et al. Intergranular corrosion susceptibility of a novel Super304H stainless steel[J]. Engineering Failure Analysis, 2012,24:26−32. doi: 10.1016/j.engfailanal.2012.03.004
    [21]
    Luo C, Liu H D, Wan Q, et al. Effect of fast multiple rotation rolling on the oxidation resistance of Super304H stainless steel in high-temperature water vapor[J]. Oxidation of Metals, 2015,84(3-4):259−268. doi: 10.1007/s11085-015-9553-4
    [22]
    Wang Xiaolong, Wang Yongdong, Liu Junjie, et al. High temperature corrosion experiment on T91 and Super304H steel materials[J]. Clean Coal Technology, 2022,28(5):182−188. (王小龙, 王永东, 刘俊杰, 等. T91和Super304H钢材料高温腐蚀试验[J]. 洁净煤技术, 2022,28(5):182−188.

    Wang Xiaolong, Wang Yongdong, Liu Junjie, et al. High temperature corrosion experiment on T91 and Super304 H steel materials[J]. Clean Coal Technology, 2022, 28(5): 182-188.
    [23]
    Xu Hong, Liang Zhiyuan, Ding Jianliang, et al. Study on high temperature corrosion resistance of domestic Super304H heat resistant steel in real furnace[J]. Hot Working Technology, 2017,46(24):63−66. (徐洪, 梁志远, 丁建良, 等. 国产Super304H耐热钢实炉高温腐蚀性能研究[J]. 热加工工艺, 2017,46(24):63−66.

    Xu Hong, Liang Zhiyuan, Ding Jianliang, et al. Study on high temperature corrosion resistance of domestic Super304 H heat resistant steel in real furnace[J]. Hot Working Technology, 2017, 46(24): 63-66.
    [24]
    Schoeck G. The activation energy of dislocation movement[J]. Physica Status Solidi, 1965,8(2):499−507. doi: 10.1002/pssb.19650080209
    [25]
    Sellars C M, Mctegart W J. On the mechanism of hot deformation[J]. Acta Metallurgic, 1966,14(9):1136−1138. doi: 10.1016/0001-6160(66)90207-0
    [26]
    Mandal S, Rakesh V, Sivaprasad P V, et al. Constitutive equations to predict high temperature flow stress in a Ti-modified austenitic stainless steel[J]. Materials Science and Engineering:A, 2009,500(1-2):114−121. doi: 10.1016/j.msea.2008.09.019
    [27]
    Wu Yiming, Wang Yan, Zhang Minghe, et al. Constitutive model and hot processing maps of Fe-10Mn-2Al-0.1C medium Mn steel[J]. Materials for Mechanical Engineering, 2022,46(9):82−88. (吴翼铭, 王 焱, 张明赫, 等. Fe-10Mn-2Al-0.1C中锰钢的本构模型与热加工图[J]. 机械工程材料, 2022,46(9):82−88.

    Wu Yiming, Wang Yan, Zhang Minghe, et al. Constitutive model and hot processing maps of Fe-10 Mn-2 Al-0.1 C medium Mn steel[J]. Materials for Mechanical Engineering, 2022, 46(9): 82-88.
    [28]
    Sun Chaoyang, Luan Jingdong, Liu Geng, et al. Predicted constitutive modeling of hot deformation for AZ31 magnesium alloy[J]. Acta Metallurgica Sinica, 2012,48(7):853−860. (孙朝阳, 栾京东, 刘赓, 等. AZ31镁合金热变形流动应力预测模型[J]. 金属学报, 2012,48(7):853−860.

    Sun Chaoyang, Luan Jingdong, Liu Geng, et al. Predicted constitutive modeling of hot deformation for AZ31 magnesium alloy[J]. Acta Metallurgica Sinica, 2012, 48(7): 853-860.
    [29]
    Dong Xiaofeng, Wang Guanjun, Zhang Mingyu, et al. Study on high-temperature tensile deformation behavior of TA9 titanium alloy[J]. Iron Steel Vanadium Titanium, 2023,44(2):77−83. (董晓锋, 王冠军, 张明玉, 等. TA9钛合金高温拉伸变形行为的研究[J]. 钢铁钒钛, 2023,44(2):77−83. doi: 10.7513/j.issn.1004-7638.2023.02.011

    Dong Xiaofeng, Wang Guanjun, Zhang Mingyu, et al. Study on high-temperature tensile deformation behavior of TA9 titanium alloy[J]. Iron Steel Vanadium Titanium, 2023, 44(2): 77-83. doi: 10.7513/j.issn.1004-7638.2023.02.011
    [30]
    Medina S F, Hernandez C A. General expression of the Zener-Hollomon parameter as a function of the chemical composition of low alloy and microalloyed steels[J]. Acta Materialia, 1996,44(1):137−148. doi: 10.1016/1359-6454(95)00151-0
    [31]
    Zhu Shaozhen, Wang Jie. Constitutive relationship analysis and microstructural evolution of biomedical Ni-Ti alloy during warm deformation[J]. Iron Steel Vanadium Titanium, 2022,43(6):51−57. (朱绍珍, 王杰. 医用镍钛合金温变形过程中的本构关系和组织演变[J]. 钢铁钒钛, 2022,43(6):51−57.

    Zhu Shaozhen, Wang Jie. Constitutive relationship analysis and microstructural evolution of biomedical Ni-Ti alloy during warm deformation[J]. Iron Steel Vanadium Titanium, 2022, 43(6): 51-57.
    [32]
    Wang K, Wen D X, Li J J, et al. Hot deformation behaviors of low-alloyed ultrahigh strength steel 30CrMnSiNi2A: Microstructure evolution and constitutive modeling[J]. Materials Today Communications, 2021,26:102009. doi: 10.1016/j.mtcomm.2021.102009
    [33]
    Prasad Y V R K, Gegelh L, Doraivelu S M, et al. Modeling of dynamic material behavior in hot deformation: Forging of Ti-6242[J]. Metallurgical Transactions A, 1984,15(10):1883−1892. doi: 10.1007/BF02664902
    [34]
    Prasad Y V R K, Seshacharvulu T. Modelling of hot deformation for microstructural control[J]. Metallurgical Reviews, 1998,43(6):243−258. doi: 10.1179/imr.1998.43.6.243
    [35]
    Prasad Y V R K, Rao K P. Processing maps and rate controlling mechanisms of hot deformation of electrolytic tough pitch copper in the temperature range 300-950 ℃[J]. Materials Science and Engineering A, 2005,391(1-2):141−150. doi: 10.1016/j.msea.2004.08.049
    [36]
    Medeiros S C, Frazier W G, Prasad Y V R K. Hot deformation mechanisms in a powder metallurgy nickel-base superalloy IN 625[J]. Metallurgical and Materials Transactions A, 2000,31(9):2317−2325. doi: 10.1007/s11661-000-0147-6
    [37]
    Kang Fuwei, Sun Jianfei, Zhang Guoqing, et al. Characteristics of hot compression deformation and microstructure evolution of spray formed nickel base superalloy[J]. Acta Metallurgica Sinica, 2007,43(10):1053−1058. (康福伟, 孙剑飞, 张国庆, 等. 喷射成形镍基高温合金热变形特性及微观组织变化[J]. 金属学报, 2007,43(10):1053−1058.

    Kang Fuwei, Sun Jianfei, Zhang Guoqing, et al. Characteristics of hot compression deformation and microstructure evolution of spray formed nickel base superalloy[J]. Acta Metallurgica Sinica, 2007, 43(10): 1053-1058.
    [38]
    Guo Haiting, Deng Lei, Wang Xinyun. Research on the deformation behavior of 6061 aluminum alloy based on processing map[J]. Journal of Netshape Forming Engineering, 2011,3(6):6−8. (郭海廷, 邓磊, 王新云. 基于热加工图的铝合金6061变形行为研究[J]. 精密成形工程, 2011,3(6):6−8.

    Guo Haiting, Deng Lei, Wang Xinyun. Research on the deformation behavior of 6061 aluminum alloy based on processing map[J]. Journal of Netshape Forming Engineering, 2011, 3(6): 6-8.
    [39]
    Cepeda-Jiménez C M, Ruano O A, Carsí M, et al. Study of hot deformation of an Al–Cu–Mg alloy using processing maps and microstructural characterization[J]. Materials Science and Engineering:A, 2012,552:530−539. doi: 10.1016/j.msea.2012.05.082
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(2)

    Article Metrics

    Article views (417) PDF downloads(12) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return