Volume 45 Issue 2
Feb.  2024
Turn off MathJax
Article Contents
Sun Ying, Zhang Huiyun, Zheng Liuwei. Effect of laser power on microstructure and mechanical properties of high entropy alloy /316L stainless steel materials[J]. IRON STEEL VANADIUM TITANIUM, 2024, 45(2): 176-181. doi: 10.7513/j.issn.1004-7638.2024.02.025
Citation: Sun Ying, Zhang Huiyun, Zheng Liuwei. Effect of laser power on microstructure and mechanical properties of high entropy alloy /316L stainless steel materials[J]. IRON STEEL VANADIUM TITANIUM, 2024, 45(2): 176-181. doi: 10.7513/j.issn.1004-7638.2024.02.025

Effect of laser power on microstructure and mechanical properties of high entropy alloy /316L stainless steel materials

doi: 10.7513/j.issn.1004-7638.2024.02.025
More Information
  • Received Date: 2022-12-15
    Available Online: 2024-04-30
  • Publish Date: 2024-04-30
  • Selective laser additive manufacturing (SLM) fabricated metal matrix composites have many advantages such as flexible structure and controllable composition. In this paper, 316L stainless steel was used as the matrix material and Al0.5CoCrFeNiTi0.5 high entropy alloy (HEA) powder was used as the particle reinforcement to study the effect of laser power on the microstructure, micro-nano mechanical and macro-mechanical properties of Al0.5CoCrFeNiTi0.5 /316L composites during SLM printing. The results show that with the increase of laser power, the forming quality of the composite decreases and the microcracks occur in the composite. The original spherical particles of high entropy alloy do not exist, the elements in the composite are evenly distributed, the fluidity of the adding pool of Al0.5CoCrFeNiTi0.5 particles decreases, and the remelted zone presents equiaxed crystal distribution. With the increase of laser power, the hardness of remelted zone and non-remelted zone increases, and the elastic recovery rate decreases as a whole. The tensile strength and elongation also decrease with the increase of laser power, and the tensile strength is up to 1136 MPa. The internal strengthening mechanism of Al0.5CoCrFeNiTi0.5 particles is mainly attributed to solid solution strengthening and the fracture form is ductile fracture.
  • loading
  • [1]
    Zhou Jianpeng, Ruan Jianming, Huang Boyuan, et al. Vacuum sintering fabrication and physico and physico-chemical properties of 316L stainless steel fibre/HA composite biomaterial[J]. Acta Materiae Compositae Sinica, 2005,22(5):39−46. (邹俭鹏, 阮建明, 黄伯元, 等. 真空烧结制备316L不锈钢纤维/HA复合生物材料及其理化性能[J]. 复合材料学报, 2005,22(5):39−46. doi: 10.3321/j.issn:1000-3851.2005.05.006

    Zhou Jianpeng, Ruan Jianming, Huang Boyuan, et al.Vacuum sintering fabrication and physico and physico-chemical properties of 316 L stainless steel fibre/HA composite biomaterial[J]. Acta Materiae Compositae Sinica, 2005, 22(5): 39-46. doi: 10.3321/j.issn:1000-3851.2005.05.006
    [2]
    Mustafa Güden, Samed Enser, Mesut Bayhan, et al. The strain rate sensitive flow stresses and constitutive equations of a selective-laser-melt and an annealed-rolled 316L stainless steel: A comparative study[J]. Materials Science & Engineering A, 2022,838:142743.
    [3]
    Wang Ke, Chao Qi, Murugesan Annasamy, et al. On the pitting behaviour of laser powder bed fusion prepared 316L stainless steel upon post-processing heat treatments[J]. Corrosion Science, 2022,197:110060. doi: 10.1016/j.corsci.2021.110060
    [4]
    Zhao Yuhui, Gao Mengqiu, Zhao Jibin, et al. Microstructure and properties of WC particles reinforced 316L stainless steel composites prepared by additive and subtractive manufacturing[J]. Journal of Northeastern University, 2022,43(2):197−205. (赵宇辉, 高孟秋, 赵吉宾, 等. 增减材复合制造WC颗粒增强316L不锈钢材料组织性能[J]. 东北大学学报, 2022,43(2):197−205.

    Zhao Yuhui, Gao Mengqiu, Zhao Jibin, et al. Microstructure and properties of WC particles reinforced 316 L stainless steel composites prepared by additive and subtractive manufacturing[J]. Journal of Northeastern University, 2022, 43(2): 197-205.
    [5]
    Zhang Peng, Li Jing, Wang Wenxian, et al. Design, shielding mechanismand tensile property of a novel (B4CP+6061Al)/Cf/6061Al laminar neutron-shielding composite[J]. Vacuum, 2020,177:109383. doi: 10.1016/j.vacuum.2020.109383
    [6]
    Wang Changjun, Liu Yu, Zhou Jian, et al. Research progress of metal additive technology in iron and steel field[J]. China Metallurgy, 2022,32(5):7−15. (王长军, 刘雨, 周健, 等. 金属增材技术在钢铁领域的研究进展[J]. 中国冶金, 2022,32(5):7−15. doi: 10.13228/j.boyuan.issn1006-9356.20210751

    Wang Changjun, Liu Yu, Zhou Jian, et al. Research progress of metal additive technology in iron and steel field[J]. China Metallurgy, 2022, 32(5): 7-15. doi: 10.13228/j.boyuan.issn1006-9356.20210751
    [7]
    Liu Yingying, Qian Jianxing, Fu Mingjie, et al. Superplastic deformation behavior of TiBw/TA15 composite sheet[J]. Aeronautical Manufacturing Technology, 2022,65(4):80−86. (刘莹莹, 钱健行, 付明杰, 等. TiBw /TA15 复合材料板材超塑变形行为研究[J]. 航空制造技术, 2022,65(4):80−86.

    Liu Yingying, Qian Jianxing , Fu Mingjie, et al. Superplastic deformation behavior of TiBw/TA15 composite sheet[J]. Aeronautical Manufacturing Technology, 2022, 65(4): 80-86.
    [8]
    Zhao Zhenguo, Zhu Heguo. Effects of vacuum hot-pressing time and pressure on the microstructure and mechanical properties of CoCrCuFeNi high-entropy alloy[J]. Materials Science and Engineering of Powder Metallurgy, 2021,10(2):43−48. (赵振国, 朱和国. 真空热压时间和压力对CoCrCuFeNi 高熵合金组织与力学性能的影响[J]. 粉末冶金材料科学与工程, 2021,10(2):43−48.

    Zhao Zhenguo, Zhu Heguo. Effects of vacuum hot-pressing time and pressure on the microstructure and mechanical properties of CoCrCuFeNi high-entropy alloy[J]. Materials Science and Engineering of Powder Metallurgy, 2021, 10(2): 43-48.
    [9]
    Liu Shifeng, Wei Gang, Wang Yan, et al. Research progress on additive manufacturing of 17-4PH martensitic stainless steels[J]. China Metallurgy, 2022,30(3):7−15. (刘世锋, 魏钢, 王岩, 等. 增材制造17-4PH马氏体不锈钢研究进展[J]. 中国冶金, 2022,30(3):7−15.

    Liu Shifeng, Wei Gang, Wang Yan, et al. Research progress on additive manufacturing of 17-4 PH martensitic stainless steels[J]. China Metallurgy, 2022, 30(3): 7-15.
    [10]
    Cui Zhaowen, Li Jingren, Li Zezhou, et al. Performance study of copper matrix composite materials with CNTs, Al2O3 double reinforced by powder metallurgy method[J]. Journal of Mechanical Engineering, 2013,49(18):52−56. (崔照雯, 李敬仁, 李泽洲, 等. 粉末冶金法CNTs、Al2O3双增强铜基复合材料性能研究[J]. 机械工程学报, 2013,49(18):52−56. doi: 10.3901/JME.2013.18.052

    Cui Zhaowen, Li Jingren, Li Zezhou, et al. Performance study of copper matrix composite materials with CNTs, Al2O3 double reinforced by powder metallurgy method [J]. Journal of Mechanical Engineering, 2013, 49(18): 52-56. doi: 10.3901/JME.2013.18.052
    [11]
    Yu Runzhen, Yu Shengpu, Qi Bin, et al. Microstructural evolution behavior and mechanical property of HSLA steel by wire arc additive manufacturing[J]. Iron & Steel, 2021,56(10):136−145. (禹润缜, 余圣普, 齐膑, 等. 电弧增材制造HSLA钢的组织演变行为与力学性能[J]. 钢铁, 2021,56(10):136−145. doi: 10.13228/j.boyuan.issn0449-749x.20210183

    Yu Runzhen, Yu Shengpu, Qi Bin, et al.Microstructural evolution behavior and mechanical property of HSLA steel by wire arc additive manufacturing[J]. Iron & Steel, 2021, 56(10): 136-145. doi: 10.13228/j.boyuan.issn0449-749x.20210183
    [12]
    Zhang Shuai, Yu Huaxin, Zhang Tongyuan, et al. Experiment on laser cladding surface strengthening of flatness roll for cold-rolled steel strip[J]. Iron & Steel, 2021,56(7):94−100. (张帅, 于华鑫, 张桐源, 等. 冷轧带钢板形辊激光熔覆表面强化试验[J]. 钢铁, 2021,56(7):94−100. doi: 10.13228/j.boyuan.issn0449-749x.20200627

    Zhang Shuai, Yu Huaxin, Zhang Tongyuan, et al. Experiment on laser cladding surface strengthening of flatness roll for cold-rolled steel strip[J]. Iron & Steel, 2021, 56(7): 94-100. doi: 10.13228/j.boyuan.issn0449-749x.20200627
    [13]
    Riquelme A C, Sanchez de Rojas, Candela P Rodrigo, et al. Influence of process parameters in additive manufacturing of highly reinforced 316L /SiCp composites[J]. Journal of Materials Processing Tech., 2022,299:117325. doi: 10.1016/j.jmatprotec.2021.117325
    [14]
    Li Jing, Qu Hongqiao, Bai Jiaming. Grain boundary engineering during the laser powder bed fusion of TiC/316L stainless steel composites: New mechanism for forming TiC-induced special grain boundaries[J]. Acta Materialia, 2022,226:117605. doi: 10.1016/j.actamat.2021.117605
    [15]
    Zhai Weng, Zhou Wei, Nai S, et al. Characterization of nanoparticle mixed 316L powder for additive manufacturing[J]. Journal of Materials Science & Technology, 2020,47:162−168.
    [16]
    Zhang Chen, Zhu Junkai, Ji Chaoyue, et al. Laser powder bed fusion of high-entropy alloy particle-reinforced stainless steel with enhanced strength, ductility, and corrosion resistance[J]. Materials & Design, 2021,209:109950.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(4)

    Article Metrics

    Article views (403) PDF downloads(21) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return