Volume 45 Issue 2
Feb.  2024
Turn off MathJax
Article Contents
Shang Guangmin, Liu Hongyu, Deng Weijie, Li You, Sun Boxiang, Li Ruilin. The addition of anadium and nitride alloy on the solidificationstructure and hardness of M2 high-speed steel[J]. IRON STEEL VANADIUM TITANIUM, 2024, 45(2): 182-189. doi: 10.7513/j.issn.1004-7638.2024.02.026
Citation: Shang Guangmin, Liu Hongyu, Deng Weijie, Li You, Sun Boxiang, Li Ruilin. The addition of anadium and nitride alloy on the solidificationstructure and hardness of M2 high-speed steel[J]. IRON STEEL VANADIUM TITANIUM, 2024, 45(2): 182-189. doi: 10.7513/j.issn.1004-7638.2024.02.026

The addition of anadium and nitride alloy on the solidificationstructure and hardness of M2 high-speed steel

doi: 10.7513/j.issn.1004-7638.2024.02.026
  • Received Date: 2024-01-03
    Available Online: 2024-05-14
  • Publish Date: 2024-04-30
  • In order to fully exploit the potential role of vanadium-Nitride alloy on high-speed steel, the evolution of solidification structure and hardness of M2 high-speed steel with vanadium-Nitride alloy addition had been investigated by using a rapid solidification melt-sampling apparatus, where the vanadium-nitride alloy was added into the standard M2 high-speed steel specified by GB/T 9943-2008 , an experimental exploration was conducted. Thermo-Calc and JMatPro software, in combination with optical microscopy, scanning electron microscopy, X-ray diffraction apparatus, and hardness tester, were employed for the observation of substrate grain morphologies, sizes, and distributions at various locations subsequent to the solidification of M2 high-speed steel with different N content (0.0365%, 0.0165%). Additionally, observations were made on carbide types, morphologies, sizes, and distributions, while hardness variations were measured. The results indicate that the addition of vanadium-nitride alloy can help refining the size of substrate grains. In the case of the 0.0365% N experimental steel, equiaxed grains were observed at the center, 1/2 radius, and periphery; whereas the 0.0165% N experimental steel exhibited columnar grains at 1/2 radius. The addition of vanadium-nitride alloy could not alter the precipitation type of carbides during the solidification process, but it facilitated the fragmentation of carbides. The addition of vanadium-nitride alloy resulted in higher hardness. The increased hardness in the case of the 0.0365% N experimental steel is attributed to the refinement of substrate grains and an augmented quantity of M (C, N) particles.
  • loading
  • [1]
    Zhou X F , Fang F, Li G, et al. Morphology and properties of M2C eutectic carbides in AISI M2 steel[J]. ISIJ International, 2010,50(8):1151−1157.
    [2]
    Boccalini M, Goldenstein H. Solidification of high speed steels[J]. International Materials Reviews, 2001,46(2):92−115. doi: 10.1179/095066001101528411
    [3]
    Yao Jian, Zhu Xida, Liu Yu, et al. Development status of high carbon and high alloy tool steel continuous casting process[J]. Special Steel, 2022,43(6):66−72. (姚健, 朱喜达, 刘宇, 等. 高碳高合金工模具钢连铸工艺发展现状[J]. 特殊钢, 2022,43(6):66−72.

    Yao Jian, Zhu Xida, Liu Yu, et al. Development status of high carbon and high alloy tool steel continuous casting process[J]. Special Steel, 2022, 43(6): 66−72.
    [4]
    Ai Zhengrong, Wu Hongyan, Yu Kai, et al. Effect of cryogenic treatment on properties of W6Mo5Cr4V2 high speed steel[J]. Special Steel, 2019,40(6):60−64. (艾峥嵘, 吴红艳, 于凯, 等. 深冷处理对 W6Mo5Cr4V2高速钢性能的影响[J]. 特殊钢, 2019,40(6):60−64. doi: 10.3969/j.issn.1003-8620.2019.06.013

    Ai Zhengrong, Wu Hongyan, Yu Kai, et al. Effect of cryogenic treatment on properties of W6Mo5Cr4V2 high speed steel[J]. Special Steel, 2019, 40(6): 60−64. doi: 10.3969/j.issn.1003-8620.2019.06.013
    [5]
    Boccalini Jr M, Correˆa A V O, Goldenstein H. Rare earth metal induced modification of γ-M2C, γ-M6C, and γ-MC eutectics in as cast M2 high speed steel[J]. Materials Science and Technology, 1999,15:621−626. doi: 10.1179/026708399101506355
    [6]
    Chi Hongxiao, Ma Dangshen, Xu Huixia, et al. Effect of solidification rate on as-cast microstructure of M2 high speed steel[J]. Transactions of Materials and Heat Treatment, 2017,38(1):94−99. (迟宏宵, 马党参, 徐辉霞, 等. 凝固速率对M2 高速工具钢铸态组织的影响[J]. 材料热处理学报, 2017,38(1):94−99.

    Chi Hongxiao, Ma Dangshen, Xu Huixia, et al. Effect of solidification rate on as-cast microstructure of M2 high speed steel[J]. Transactions of Materials and Heat Treatment, 2017, 38(1): 94−99.
    [7]
    Zhao Z R, Cao Y L, Wan X L, et al. Effect of cooling rate on carbide characteristics of the high vanadium high-speed steel[J]. ISIJ International, 2022,62(3):524−531. doi: 10.2355/isijinternational.ISIJINT-2021-244
    [8]
    Qu M G, Wang Z H, Li H, et al. Effects of mischmetal addition on phase transformation and as-cast microstructure characteristics of M2 high-speed steel[J]. Journal of Rare Earths, 2013,31(6):628−633. doi: 10.1016/S1002-0721(12)60332-9
    [9]
    Yin F X, Wang L, Xiao Z X, et al. Effect of titanium and rare earth microalloying on microsegregation, eutectic carbides of M2 high speed steel during ESR process[J]. Journal of Rare Earths, 2020,38:1030−1038. doi: 10.1016/j.jre.2019.09.009
    [10]
    Halfa H. Thermodynamic calculation for silicon modified AISI M2 high speed tool steel[J]. Journal of Minerals and Materials Characterization and Engineering, 2013,1:257−270. doi: 10.4236/jmmce.2013.15040
    [11]
    Wang Kai, Wang Zhenyu, Xie Zhibin, et al. Practice of rare earth gestation treatment technology for electroslag remelting M42 high speed steel[J]. Special Steel, 2021,42(6):37−39. (王凯, 王振宇, 谢志彬, 等. 电渣重熔 M42 高速钢稀土孕育处理工艺实践[J]. 特殊钢, 2021,42(6):37−39. doi: 10.3969/j.issn.1003-8620.2021.06.008

    Wang Kai, Wang Zhenyu, Xie Zhibin, et al. Practice of rare earth gestation treatment technology for electroslag remelting M42 high speed steel[J]. Special Steel, 2021, 42(6): 37−39. doi: 10.3969/j.issn.1003-8620.2021.06.008
    [12]
    Luo Y W, Guo H J, Sun X L, et al. Influence of the nitrogen content on the carbide transformation of AISI M42 high-speed steels during annealing[J]. Scientific Reports, 2018,8:4328. doi: 10.1038/s41598-018-22461-z
    [13]
    Matter T, Ibrahim K M, Fathy A, et al. Improving the wear resistance of M41 steel by nitrogen alloying and ESR[J]. Materials Characterization, 2007,58:407−415. doi: 10.1016/j.matchar.2006.06.007
    [14]
    Halfa H, Mattar T, Eissa M. Precipitation behavior of modified as cast high nitrogen super hard high-speed tool steel[J]. Steel Research International, 2012,83:9999.
    [15]
    Jiao W C, Li H B, Feng H, et al. Effect of high nitrogen addition on microstructure and mechanical properties of as-cast M42 high steel[J]. ISIJ International, 2020,60(3):564−572. doi: 10.2355/isijinternational.ISIJINT-2019-417
    [16]
    Xu Quan. Research on the application of VN alloy in high speed steel [D]. Kunming: Kunming University of Science and Technology, 2005. (徐权. VN合金在高速钢中的应用研究 [D]. 昆明: 昆明理工大学, 2005.

    Xu Quan. Research on the application of VN alloy in high speed steel [D]. Kunming: Kunming University of Science and Technology, 2005.
    [17]
    Choudhary S K, Ghosh A. Mathematical model for prediction of composition of inclusions formed during solidification of liquid steel[J]. ISIJ International, 2009,49:1819−1827. doi: 10.2355/isijinternational.49.1819
    [18]
    Liu B L, Lü Z Q, Feng W W, et al. Precipitation and decomposition behaviors of carbides in AISI M2 high-speed steel with nitrogen and mischmetal[J]. Journal of Central South University, 2017,24:782−788. doi: 10.1007/s11771-017-3480-2
    [19]
    Li H N, Han S C, Zhang B H, et al. Effects of niobium on microstructure, hardness and wear behavior for high-speed steel rolls[J]. Metallurgical and Materials Transactions A, 2023,54:3271−3285. doi: 10.1007/s11661-023-07098-6
    [20]
    Akbari A, Mohammadzadeh R, Templier C, et al. Effect of the initial microstructure on the plasma nitriding behavior of AISI M2 high speed steel[J]. Surface & Coatings Technology, 2010,204(24):4114−4120.
    [21]
    Cui H R, Lai J P, Pan Q L, et al. Effect of N and Zr on as-cast microstructure and properties after annealing of a high-speed steel[J]. Journal of Iron and Steel Research International, 2018,25:460−468. doi: 10.1007/s42243-018-0049-8
    [22]
    Arias J, Cabeza M, Castro G, et al. Microstructural characterization of laser surface melted AISI M2 tool steel[J]. Journal of Microscopy, 2010,239:184−193. doi: 10.1111/j.1365-2818.2010.03370.x
    [23]
    Deng Yukung, Chen Jingrong, Wang Shizhang, et al. High speed tool steel [M]. Beijing : Metallurgical Industry Press, 2002: 80. (邓玉昆, 陈景榕, 王世章, 等. 高速工具钢 [M]. 北京: 冶金工业出版社, 2002: 80.

    Deng Yukung, Chen Jingrong, Wang Shizhang, et al. High speed tool steel [M]. Beijing : Metallurgical Industry Press, 2002: 80.
    [24]
    Chaus A S. Application of bismuth for solidification structure refinement and properties enhancement in as-cast high-speed steels[J]. ISIJ International, 2005,45:1297−1306. doi: 10.2355/isijinternational.45.1297
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(3)

    Article Metrics

    Article views (73) PDF downloads(4) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return