| Citation: | DENG Lingli, GAO Haigen, ZHAO Xiangyu. Progress in molecular dynamics simulation of NiTi shape memory alloys[J]. IRON STEEL VANADIUM TITANIUM, 2025, 46(3): 70-80. doi: 10.7513/j.issn.1004-7638.2025.03.012 |
| [1] |
SU M, SONG Y. Printable smart materials and devices: Strategies and applications[J]. Chemical Reviews, 2022,122(5):5144-5164. doi: 10.1021/acs.chemrev.1c00303
|
| [2] |
ZHAO L C, CAI W, ZHENG Y F. Shape memory effect and superelasticity of alloys [M]. Beijing: National Defense Industry Press, 2002: 13-20. (赵连城, 蔡伟, 郑玉峰. 合金的形状记忆效应与超弹性[M]. 北京: 国防工业出版社, 2002: 13-20.
ZHAO L C, CAI W, ZHENG Y F. Shape memory effect and superelasticity of alloys [M]. Beijing: National Defense Industry Press, 2002: 13-20.
|
| [3] |
TONG Y X, ZHENG Y F, LI L. Ultra-fine crystal titanium-nickel based shape memory alloy[M]. Beijing: Science Press, 2017: 123-127. (佟运祥, 郑玉峰, 李莉. 超细晶钛镍基形状记忆合金[M]. 北京: 科学出版社, 2017: 123-127.
TONG Y X, ZHENG Y F, LI L. Ultra-fine crystal titanium-nickel based shape memory alloy[M]. Beijing: Science Press, 2017: 123-127.
|
| [4] |
TSUCHIYA K, INUZUKA M, TOMUS D, et al. Martensitic transformation in nanostructured TiNi shape memory alloy formed via severe plastic deformation[J]. Materials Science & Engineering A, Structural Materials : Properties, Microstructure and Processing, 2006, 438: 643-648.
|
| [5] |
BUEHLER W J, GILFRICH J V, WILEY R C. Effect of low-temperature phase changes on the mechanical properties of alloys near composition TiNi[J]. Journal of Applied Physics, 1963,34(5):1475-1477. doi: 10.1063/1.1729603
|
| [6] |
OTSUKA K, REN X. Physical metallurgy of Ti-Ni-based shape memory alloys[J]. Progress in Materials Science, 2005,50(5):511-678. doi: 10.1016/j.pmatsci.2004.10.001
|
| [7] |
ZHAO W B. Material characteristics and medical application of nickel-titanium shape-memory alloy[J]. Journal of Clinical Rehabilitative Tissue Engineering Research, 2007,11(22):4376-4379. (赵维彪. 镍钛形状记忆合金的材料学特征与医学应用[J]. 中国组织工程研究与临床康复, 2007,11(22):4376-4379.
ZHAO W B. Material characteristics and medical application of nickel-titanium shape-memory alloy[J]. Journal of Clinical Rehabilitative Tissue Engineering Research, 2007, 11(22): 4376-4379.
|
| [8] |
ALIPOUR S, TAROMIAN F, GHOMI E R, et al. Nitinol: From historical milestones to functional properties and biomedical applications//Proceedings of the Institution of Mechanical Engineers, Part H[J]. Journal of Engineering in Medicine, 2022,236(11):1595-1612. doi: 10.1177/09544119221123176
|
| [9] |
PATEL S K, BEHERA B, SWAIN B, et al. A review on NiTi alloys for biomedical applications and their biocompatibility [C]// Materials Today : Proceedings. Elsevier Ltd, 2020, 33: 5548-5551.
|
| [10] |
MANI G, PORTER D, GROVE K, et al. Surface finishing of nitinol for implantable medical devices: A review[J]. Journal of Biomedical Materials Research. Part B, Applied Biomaterials, 2022,110(12):2763-2778. doi: 10.1002/jbm.b.35112
|
| [11] |
DELLACORTE C. Ni-Ti alloys for aerospace bearing applications[C]//World Tribology Congress (WTC 2017). 2017 (GRC-E-DAA-TN42521).
|
| [12] |
PUENTE-CÓRDOVA J G, RENTERÍA-BALTIÉRREZ F Y, DIABB-ZAVALA J M, et al. Thermomechanical characterization and modeling of NiTi shape memory alloy coil spring[J]. Materials, 2023,16(10):3673. doi: 10.3390/ma16103673
|
| [13] |
BIFFI C A, NESPOLI A, PREVITALI B, et al. Functional response of NiTi elements for smart micro-actuation applications: SMST 2013[J]. Journal of Materials Engineering and Performance, 2014,23(7):2351-2356. doi: 10.1007/s11665-014-0898-7
|
| [14] |
LI G T, YU T Y, WU P, et al. Molecular dynamics simulation of NiTi shape memory alloys produced by laser powder bed fusion: Laser parameters on phase transformation behavior[J]. Materials, 2023,16(1):409. doi: 10.3390/ma16010409
|
| [15] |
LIU B F, WANG Y Y, LI J C, et al. Surface effect on phase transformation of single crystal NiTi shape memory alloys studied by molecular dynamics simulation[J]. Advanced Engineering Materials, 2023,25(17):2300358. doi: 10.1002/adem.202300358
|
| [16] |
CHEN J Y, HUO D H, KUMAR Y H. Molecular dynamics study of phase transformations in NiTi shape memory alloy embedded with precipitates[J]. Materials Research Express, 2021,8(10):106508. doi: 10.1088/2053-1591/ac2b57
|
| [17] |
CHEN X, LIU T, LI R, et al. Molecular dynamics simulation on the shape memory effect and superelasticity in NiTi shape memory alloy[J]. Computational Materials Science, 2018,146:61-69. doi: 10.1016/j.commatsci.2018.01.026
|
| [18] |
WANG B, KANG G C, WU W P, et al. Molecular dynamics simulations on nanocrystalline super-elastic NiTi shape memory alloy by addressing transformation ratchetting and its atomic mechanism[J]. International Journal of Plasticity, 2020,125:374-394. doi: 10.1016/j.ijplas.2019.10.009
|
| [19] |
WANG M, JIANG S Y, SUN D, et al. Molecular dynamics simulation of mechanical behavior and phase transformation of nanocrystalline NiTi shape memory alloy with gradient structure[J]. Computational Materials Science, 2022,204:111186. doi: 10.1016/j.commatsci.2022.111186
|
| [20] |
LIANG Y L. Investigation of plastic deformation mechanism and microstructure evolution of NiTiFe shape memory alloy during plane strain compression[D]. Harbin: Harbin Engineering University, 2018. (梁玉龙. 镍钛铁形状记忆合金平面应变塑性变形机理及微观结构演变研究[D]. 哈尔滨: 哈尔滨工程大学, 2018.
LIANG Y L. Investigation of plastic deformation mechanism and microstructure evolution of NiTiFe shape memory alloy during plane strain compression[D]. Harbin: Harbin Engineering University, 2018.
|
| [21] |
YANG J N, HUANG B, GU X J, et al. A review of shape memory alloys: Mechanical behavior and application[J]. Chinese Journal of Solid Mechanics, 2021,42(4):345-375. (杨建楠, 黄彬, 谷小军, 等. 形状记忆合金力学行为与应用综述[J]. 固体力学学报, 2021,42(4):345-375.
YANG J N, HUANG B, GU X J, et al. A review of shape memory alloys: Mechanical behavior and application[J]. Chinese Journal of Solid Mechanics, 2021, 42(4): 345-375.
|
| [22] |
ALDER B, WAINWRIGHT T. Phase transition for a hard sphere system[J]. J. Chem. Phys., 1957,27:1208-1209 . doi: 10.1063/1.1743957
|
| [23] |
ALDER B, WAINWRIGHT T. Studies in molecular dynamics I: General method[J]. J. Chem. Phys., 1959,31:459-466 . doi: 10.1063/1.1730376
|
| [24] |
RAHMAN A. Correlations in the motion of atoms in liquid argon[J]. Phys. Rev., 1964,136:405-411.
|
| [25] |
VERLET L. Computer “experiments” on classical fluids i: Thermodynamical properties of Lennard-Jones molecules[J]. Phys. Rev., 1967,159:98-103. doi: 10.1103/PhysRev.159.98
|
| [26] |
SHIBUTA Y, SAKANE S, MIYOSHI E, et al. Heterogeneity in homogeneous nucleation from billion-atom molecular dynamics simulation of solidification of pure metal[J]. Nature Communications, 2017,8(1):1-10. doi: 10.1038/s41467-016-0009-6
|
| [27] |
SHIBUTA Y, OHNO M, TAKAKI T. Advent of cross-scale modeling: High-performance computing of solidification and grain growth[J]. Advanced Theory and Simulations, 2018,1(9):1800065. doi: 10.1002/adts.201800065
|
| [28] |
KMIECIK S, GRONT D, KOLINSKI M, et al. Coarse-Grained protein models and their applications[J]. Chemical Reviews, 2016,116(14):7898-7936. doi: 10.1021/acs.chemrev.6b00163
|
| [29] |
EBINA H, FUKAHARA S, SHIBUTA Y. Accelerated molecular dynamics simulation of vacancy diffusion in substitutional alloy with collective variable-driven hyperdynamics[J]. Computational Materials Science, 2021,196:110577. doi: 10.1016/j.commatsci.2021.110577
|
| [30] |
VOTER A F. Hyperdynamics: Accelerated molecular dynamics of infrequent events[J]. Physical Review Letters, 1997,78(20):3908-3911. doi: 10.1103/PhysRevLett.78.3908
|
| [31] |
SORENSEN M R, VOTER A F. Temperature-accelerated dynamics for simulation of infrequent events[J]. Journal of Chemical Physics, 2000,112(21):9599-9606. doi: 10.1063/1.481576
|
| [32] |
LAIO A, PARRINELLO M. Escaping free-energy minima[J]. Proceedings of the National Academy of Sciences - PNAS, 2002,99(20):12562-12566. doi: 10.1073/pnas.202427399
|
| [33] |
ISHII A, OGATA S, KIMIZUKA H, et al. Adaptive-boost molecular dynamics simulation of carbon diffusion in iron[J]. Physical Review B: Condensed Matter and Materials Physics, 2012,85(6):064303. doi: 10.1103/PhysRevB.85.064303
|
| [34] |
BAL K M, NEYTS E C. Merging metadynamics into hyperdynamics: Accelerated molecular simulations reaching time scales from microseconds to seconds[J]. Journal of Chemical Theory and Computation, 2015,11(10):4545-4554. doi: 10.1021/acs.jctc.5b00597
|
| [35] |
BADAR M S, SHAMSI S, AHMED J, et al. Molecular dynamics simulations: Concept, methods, and applications[M]//Transdisciplinarity. Cham: Springer International Publishing, 2022: 131-151.
|
| [36] |
LEIMKUHLER B, MATTHEWS C. Molecular dynamics[J]. Interdisciplinary Applied Mathematics, 2015,39:443.
|
| [37] |
TUCKERMAN M E, MARTYNA G J. Understanding modern molecular dynamics: Techniques and applications[J]. Journal of Physical Chemistry B, 2000,104(2):159-178. doi: 10.1021/jp992433y
|
| [38] |
KANG H B, ZHANG Y W, YANG M. Molecular dynamics simulation of thermal conductivity of Cu-Ar nanofluid using EAM potential for Cu-Cu interactions[J]. Applied Physics A: Materials Science & Processing, 2011, 103(4): 1001-1008.
|
| [39] |
METYA A K, HENS A, SINGH J K. Molecular dynamics study of vapor-liquid equilibria and transport properties of sodium and lithium based on EAM potentials[J]. Fluid Phase Equilibria, 2012,313:16-24. doi: 10.1016/j.fluid.2011.08.026
|
| [40] |
MUNAJI, SUDARNO, PURWANINGROOM D L, et al. Performance of EAM and MEAM potential for NiTi alloys: A comparative study[J]. IOP Conference Series: Materials Science and Engineering, 2017,180(1):12252.
|
| [41] |
XU W, KIM W K. Molecular dynamics simulation of the uniaxial tensile test of silicon nanowires using the MEAM potential[J]. Mechanics of Materials, 2019,137:103140. doi: 10.1016/j.mechmat.2019.103140
|
| [42] |
TRĘDAK P, RUDNICKI W R, MAJEWSKI J A. Efficient implementation of the many-body reactive bond order (REBO) potential on GPU[J]. Journal of Computational Physics, 2016,321:556-570. doi: 10.1016/j.jcp.2016.05.061
|
| [43] |
KHAN A, NAVID I, NOSHIN M, et al. Equilibrium molecular dynamics (MD) simulation study of thermal conductivity of graphene nanoribbon: A comparative study on MD potentials[J]. Electronics (Basel), 2015,4(4):1109-1124.
|
| [44] |
LIM J S. Dynamics of surfaces and interfaces: From first-principles modeling to machine-learning molecular dynamics[D]. Boston: Harvard University, 2022.
|
| [45] |
NOTTOLI M, MENNUCCI B, LIPPARINI F. Excited state born-oppenheimer molecular dynamics through coupling between time dependent DFT and AMOEBA[J]. Physical Chemistry Chemical Physics, 2020,22(35):19532-19541. doi: 10.1039/D0CP03688A
|
| [46] |
FINNIS M W, SINCLAIR J E. A simple empirical N-body potential for transition metals[J]. Philosophical Magazine A: Physics of Condensed Matter Defects and Mechanical Properties, 1984,50(1):45-55.
|
| [47] |
LAI W S, LIU B X. Lattice stability of some Ni-Ti alloy phases versus their chemical composition and disordering[J]. Journal of Physics: Condensed Matter, 2000,12(5):53-60. doi: 10.1088/0953-8984/12/5/101
|
| [48] |
MUTTER D, NIELABA P. Simulation of the shape memory effect in a NiTi nano model system[J]. Journal of alloys and compounds, 2013,577:83-87. doi: 10.1016/j.jallcom.2012.01.095
|
| [49] |
ZHONG Y, GALL K, ZHU T. Atomistic study of nanotwins in NiTi shape memory alloys[J]. Journal of Applied Physics, 2011,110(3):033532. doi: 10.1063/1.3621429
|
| [50] |
KO W S, GRABOWSKI B, NEUGEBAUER J. Development and application of a Ni-Ti interatomic potential with high predictive accuracy of the martensitic phase transition[J]. Physical Review B, 2015,92:134107. doi: 10.1103/PhysRevB.92.134107
|
| [51] |
WANG B. Study on super-elasticity degeneration mechanism of NiTi shape memory alloy by molecular dynamics simulations[D]. Chengdu: Southwest Jiaotong University, 2019. (王冰. NiTi形状记忆合金超弹性劣化机理的分子动力学模拟研究[D]. 成都: 西南交通大学, 2019.
WANG B. Study on super-elasticity degeneration mechanism of NiTi shape memory alloy by molecular dynamics simulations[D]. Chengdu: Southwest Jiaotong University, 2019.
|
| [52] |
KIM Y M, LEE B J, BASKES M I. Modified embedded-atom method interatomic potentials for Ti and Zr[J]. Physical Review B, Condensed Matter and Materials Physics, 2006,74(1):014101. doi: 10.1103/PhysRevB.74.014101
|
| [53] |
LEE B J. A modified embedded-atom method interatomic potential for the Fe-C system[J]. Acta Materialia, 2006,54(3):701-711. doi: 10.1016/j.actamat.2005.09.034
|
| [54] |
KO W S, MAISEL S B, GRABOWSKI B, et al. Atomic scale processes of phase transformations in nanocrystalline NiTi shape-memory alloys[J]. Acta Materialia, 2017,123:90-101. doi: 10.1016/j.actamat.2016.10.019
|
| [55] |
GUR S, FRANTIZSKONIS G N, MURALIDHARAN K. Atomistic simulation of shape memory effect (SME) and superelasticity (SE) in nano-porous NiTi shape memory alloy (SMA)[J]. Computational Materials Science, 2018,152:28-37. doi: 10.1016/j.commatsci.2018.05.031
|
| [56] |
NIE K, LI M P, WU W P, et al. Grain size-dependent energy partition in phase transition of NiTi shape memory alloys studied by molecular dynamics simulation[J]. International Journal of Solids and Structures, 2021,221:31-41. doi: 10.1016/j.ijsolstr.2020.02.027
|
| [57] |
LIU B F, LI Z F, DU C Z, et al. Molecular dynamics simulation of grain size effect on mechanism of twin martensite transformation of nanocrystalline NiTi shape memory alloys[J]. Computational Materials Science, 2022,210:111451. doi: 10.1016/j.commatsci.2022.111451
|
| [58] |
LIU B F, LI Z F, LI W Z, et al. Molecular dynamics simulation of the porosity effect on transformation mechanism of nanocrystalline porous NiTi shape memory alloy[J]. Materials Today Communications, 2023,34:105320. doi: 10.1016/j.mtcomm.2023.105320
|
| [59] |
LIU B F, WANG Y Y, WU W P. Effects of porosity and cyclic deformation on phase transformation of porous nanocrystalline NiTi shape memory alloy: An atomistic simulation[J]. Journal of Applied Physics, 2023,134(14):143102. doi: 10.1063/5.0167305
|
| [60] |
GALIMZYANOV B N, NIKIFOROV G A, ANIKEEV S G, et al. A unified empirical equation for determining the mechanical properties of porous NiTi alloy: From nanoporosity to microporosity[J]. Crystals (Basel), 2023,13(12):1656. doi: 10.3390/cryst13121656
|
| [61] |
KO W S, CHOI W S, XU G, et al. Dissecting functional degradation in NiTi shape memory alloys containing amorphous regions via atomistic simulations[J]. Acta Materialia, 2021,202:331-349. doi: 10.1016/j.actamat.2020.10.070
|
| [62] |
WANG M, JIANG S Y, ZHANG Y Q, et al. Molecular dynamics investigation on mechanical behaviour and phase transition of nanocrystalline NiTi shape memory alloy containing amorphous surface[J]. Applied Surface Science, 2022,587:152871. doi: 10.1016/j.apsusc.2022.152871
|
| [63] |
HUA P, XIA M L, ONUKI Y, et al. Nanocomposite NiTi shape memory alloy with high strength and fatigue resistance[J]. Nature Nanotechnology, 2021,16:409-413. doi: 10.1038/s41565-020-00837-5
|
| [64] |
LI G T, YU T Y, ZHANG N, et al. The effect of Ni content on phase transformation behavior of NiTi alloys: An atomistic modeling study[J]. Computational Materials Science, 2022,215:111804. doi: 10.1016/j.commatsci.2022.111804
|
| [65] |
LI G T, BAO J, YU T Y, et al. An atomistic study of effects of temperature and Ni element on the phase transition and wear behavior of NiTi shape memory alloy[J]. Tribology International, 2024,192:109309. doi: 10.1016/j.triboint.2024.109309
|
| [66] |
WEN S F, LIU Y, ZHOU Y, et al. Effect of Ni content on the transformation behavior and mechanical property of NiTi shape memory alloys fabricated by laser powder bed fusion[J]. Optics and Laser Technology, 2021,134:106653. doi: 10.1016/j.optlastec.2020.106653
|
| [67] |
CUI Y H, ZENG X G, XIAO J F, et al. Micro-damage evolution under intensive dynamic loading and its influence on constitutive and state equations for nanocrystalline NiTi alloy through molecular dynamics[J]. Journal of Applied Physics, 2022,131(17):174301. doi: 10.1063/5.0087504
|
| [68] |
ATAOLLAHI S, MAHTABI M J. Effects of precipitate on the phase transformation of single-crystal NiTi alloy under thermal and mechanical loads: A molecular dynamics study[J]. Materials Today Communications, 2021,29:102859. doi: 10.1016/j.mtcomm.2021.102859
|
| [69] |
ALIF MAHENDRA B N, ARIFEN R, MALYADI M, et al. Cooling times’ dependence on the glassy NiTi at extremely low temperatures: A result from rapid solidification using molecular dynamics simulations[J]. Journal of Physics: Conference Series, 2020,1428(1):12003. doi: 10.1088/1742-6596/1428/1/012003
|