Volume 46 Issue 4
Aug.  2025
Turn off MathJax
Article Contents
ZHANG Xu, XIANG Junyi, SHEN Biao, HE Wenyi, WEI Linsen, LÜ Xuewei. Efficient extraction metallurgy of vanadium slag: calcium-magnesium composite roasting vanadium extraction process[J]. IRON STEEL VANADIUM TITANIUM, 2025, 46(4): 1-7. doi: 10.7513/j.issn.1004-7638.2025.04.001
Citation: ZHANG Xu, XIANG Junyi, SHEN Biao, HE Wenyi, WEI Linsen, LÜ Xuewei. Efficient extraction metallurgy of vanadium slag: calcium-magnesium composite roasting vanadium extraction process[J]. IRON STEEL VANADIUM TITANIUM, 2025, 46(4): 1-7. doi: 10.7513/j.issn.1004-7638.2025.04.001

Efficient extraction metallurgy of vanadium slag: calcium-magnesium composite roasting vanadium extraction process

doi: 10.7513/j.issn.1004-7638.2025.04.001
More Information
  • Received Date: 2025-04-07
    Available Online: 2025-08-31
  • Publish Date: 2025-08-31
  • The calcification process is a relatively clean vanadium extraction technology from vanadium slag, but there is still room for further improvement in vanadium yield and product index. The calcium-magnesium composite vanadium extraction process originally developed by our team has achieved the effect of improving vanadium recovery rate, reducing impurity dissolution rate and tailings reduction through ion synergistic effect. In this paper, the comprehensive influence of calcium-magnesium composite on the whole process of vanadium extraction from vanadium slag is expounded. After calcium-magnesium composite roasting, the main vanadium-containing phases in the roasting clinker of vanadium slag are changed from Ca2V2O7 and Mn2V2O7 to Ca2V2O7, Mn2V2O7, Mg2V2O7 and Ca5Mg4V6O24. After acid leaching, the leaching rate of vanadium was increased by about 5%, and the dissolution rate of impurity elements such as Ca and P decreased. The vanadium precipitation rate of ammonium salt in vanadium leaching solution was 99.5%, and the purity of vanadium oxide product was 99.8%. The vanadium precipitation wastewater can be completely reused after lime neutralization treatment without affecting the smooth operation of the original process.
  • loading
  • [1]
    WU Y, CHEN D H, LIU W H, et al. 2022 Global vanadium industry development report[J]. Iron Steel Vanadium Titanium, 2023, 44(6): 1-8. (吴优, 陈东辉, 刘武汉, 等. 2022年全球钒工业发展报告[J]. 钢铁钒钛, 2023, 44(6): 1-8.

    WU Y, CHEN D H, LIU W H, et al. 2022 Global vanadium industry development report[J]. Iron Steel Vanadium Titanium, 2023, 44(6): 1-8.
    [2]
    LIANG X Y, YE G H, ZHU S Q, et al. Research progress of vanadium extraction process from vanadium-titanium magnetite[J]. Rare Metals, 2023, 47(6): 893-907. (梁雪崟, 叶国华, 朱思琴, 等. 钒钛磁铁矿提钒工艺的研究进展[J]. 稀有金属, 2023, 47(6): 893-907.

    LIANG X Y, YE G H, ZHU S Q, et al. Research progress of vanadium extraction process from vanadium-titanium magnetite[J]. Rare Metals, 2023, 47(6): 893-907.
    [3]
    CHEN H S. Study on the process of extracting V2O5 from vanadium slag by lime roasting[J]. Iron Steel Vanadium Titanium, 1992(6): 1-9. (陈厚生. 钒渣石灰焙烧法提取V2O5工艺研究[J]. 钢铁钒钛, 1992(6): 1-9.

    CHEN H S. Study on the process of extracting V2O5 from vanadium slag by lime roasting[J]. Iron Steel Vanadium Titanium, 1992(6): 1-9.
    [4]
    HUANG Q Y, XIANG J Y, PEI G S, et al. Mechanical activation enhanced vanadium slag calcification vanadium extraction process[J]. Chinese Journal of Nonferrous Metals, 2020, 30(4): 858-865. (黄青云, 向俊一, 裴贵尚, 等. 机械活化强化钒渣钙化提钒工艺[J]. 中国有色金属学报, 2020, 30(4): 858-865. doi: 10.11817/j.ysxb.1004.0609.2020-35745

    HUANG Q Y, XIANG J Y, PEI G S, et al. Mechanical activation enhanced vanadium slag calcification vanadium extraction process[J]. Chinese Journal of Nonferrous Metals, 2020, 30(4): 858-865. doi: 10.11817/j.ysxb.1004.0609.2020-35745
    [5]
    FU N X, ZHANG L, LIU W H, et al. Mechanism analysis of phase transformation process of vanadium slag calcification roasting[J]. Chinese Journal of Nonferrous Metals, 2018, 28(2): 377-386. (付念新, 张林, 刘武汉, 等. 钒渣钙化焙烧相变过程的机理分析[J]. 中国有色金属学报, 2018, 28(2): 377-386.

    FU N X, ZHANG L, LIU W H, et al. Mechanism analysis of phase transformation process of vanadium slag calcification roasting[J]. Chinese Journal of Nonferrous Metals, 2018, 28(2): 377-386.
    [6]
    WANG C Q, LIU W H, LIU H Q, et al. Vanadium slag calcification roasting sintering phenomenon research[J]. Iron Steel Vanadium Titanium, 2013, 34(6): 6-11. (王春琼, 刘武汉, 刘恢前, 等. 钒渣钙化焙烧烧结现象研究[J]. 钢铁钒钛, 2013, 34(6): 6-11.

    WANG C Q, LIU W H, LIU H Q, et al. Vanadium slag calcification roasting sintering phenomenon research[J]. Iron Steel Vanadium Titanium, 2013, 34(6): 6-11.
    [7]
    YIN D F, PENG Y, SUN Z H, et al. Study on the influence factors of vanadium slag calcification roasting and process thermal analysis[J]. Metal Mine, 2012, 41(4): 91-94. (尹丹凤, 彭毅, 孙朝晖, 等. 攀钢钒渣钙化焙烧影响因素研究及过程热分析[J]. 金属矿山, 2012, 41(4): 91-94.

    YIN D F, PENG Y, SUN Z H, et al. Study on the influence factors of vanadium slag calcification roasting and process thermal analysis[J]. Metal Mine, 2012, 41(4): 91-94.
    [8]
    FAN K, LI Z C, LI Z S, et al. Effects of different calcification agents on acid leaching of vanadium from high vanadium slag[J]. Journal of Chongqing University (Natural Science Edition), 2015(5): 151-156. (范坤, 李曾超, 李子申, 等. 不同钙化剂对高钒渣酸浸提钒的影响[J]. 重庆大学学报(自然科学版), 2015(5): 151-156.

    FAN K, LI Z C, LI Z S, et al. Effects of different calcification agents on acid leaching of vanadium from high vanadium slag[J]. Journal of Chongqing University (Natural Science Edition), 2015(5): 151-156.
    [9]
    ZHANG J H, ZHANG W, ZHANG L, et al. Effect of acid leaching on vanadium leaching rate in calcification roasting process[J]. Journal of Northeastern University (Natural Science Edition), 2014, 35(11): 1574-1578. (张菊花, 张伟, 张力, 等. 酸浸对钙化焙烧提钒工艺钒浸出率的影响[J]. 东北大学学报(自然科学版), 2014, 35(11): 1574-1578.

    ZHANG J H, ZHANG W, ZHANG L, et al. Effect of acid leaching on vanadium leaching rate in calcification roasting process[J]. Journal of Northeastern University (Natural Science Edition), 2014, 35(11): 1574-1578.
    [10]
    ZHAO Y, LI H Y, YIN X C, et al. Leaching kinetics of calcification roasted vanadium slag with high CaO content by sulfuric acid[J]. International Journal of Mineral Processing, 2014, 133: 105-111. doi: 10.1016/j.minpro.2014.10.011
    [11]
    XIANG J Y, HUANG Q Y, LÜ X W, et al. Effect of mechanical activation treatment on the recovery of vanadium from converter slag[J]. Metallurgical and Materials Transactions B, 2017, 48(5): 2759-2767. doi: 10.1007/s11663-017-1033-6
    [12]
    YANG Y, MAO H H, MALIN S. An assessment of the Ca-V-O system[J]. Calphad, 2017, 56: 29-40. doi: 10.1016/j.calphad.2016.11.005
    [13]
    JIANG T, WEN J, ZHOU M, et al. Phase evolutions, microstructure and reaction mechanism during calcification roasting of high chromium vanadium slag[J]. Journal of Alloys and Compounds, 2018, 742: 402-412. doi: 10.1016/j.jallcom.2018.01.201
    [14]
    TAYLOR P R, SHUEY S A, VIDAL E E, et al. Extractive metallurgy of vanadium-containing titaniferous magnetite ores: A review[J]. Minerals and Metallurgical Processing, 2006, 23: 80-86.
    [15]
    CAO Z M, WANG N, XIE W, et al. Critical evaluation and thermodynamic assessment of the MgO-V2O5 and CaO-V2O5 systems in air[J]. Calphad, 2017, 56: 72-79. doi: 10.1016/j.calphad.2016.12.001
    [16]
    YANG S Z. Vanadium Metallurgy[M]. Metallurgical Industry Press, 2010. (杨守志. 钒冶金[M]. 冶金工业出版社, 2010.

    YANG S Z. Vanadium Metallurgy[M]. Metallurgical Industry Press, 2010.
    [17]
    JI C L, ZHAN Q L, ZENG G Y. Solubility of magnesium vanadate in water-basic research on vanadium extraction with non-sodium salt additives[J]. Non-ferrous Metals, 1984(1): 60-66. (冀春霖, 詹庆霖, 曾桂仪. 钒酸镁盐在水中的溶解度-非钠盐添加剂提钒的基础研究[J]. 有色金属, 1984(1): 60-66.

    JI C L, ZHAN Q L, ZENG G Y. Solubility of magnesium vanadate in water-basic research on vanadium extraction with non-sodium salt additives[J]. Non-ferrous Metals, 1984(1): 60-66.
    [18]
    ZHANG L, ZHANG T, FU N X, et al. Calcification roasting thermal analysis and phase transformation mechanism analysis of vanadium slag[J]. China Nonferrous Metallurgy, 2024, 53(4): 142-148. (张林, 张涛, 付念新, 等. 钒渣钙化焙烧热分析及物相转变机理分析[J]. 中国有色冶金, 2024, 53(4): 142-148.

    ZHANG L, ZHANG T, FU N X, et al. Calcification roasting thermal analysis and phase transformation mechanism analysis of vanadium slag[J]. China Nonferrous Metallurgy, 2024, 53(4): 142-148.
    [19]
    LU X, BAI L, RAO H, et al. Oxidation behavior of ferrovanadium spinel particles in air: isothermal kinetic and reaction mechanism[J]. Journal of Central South University, 2024, 31(9): 3090-3102. doi: 10.1007/s11771-024-5754-9
    [20]
    WEN J, JIANG T, LI F F, et al. Conversion mechanism of calcium vanadate and manganese vanadate in a simplified CaO-V2O5-MnO2 system for calcification roasting of vanadium slag[J/OL]. Transactions of Nonferrous Metals Society of China, 1-19[2025-03-15]. https://link.cnki.net/urlid/43.1239.TG.20240807.1348.015.
    [21]
    WANG X. Vanadium slag calcium magnesium composite roasting-acid leaching vanadium process research [D]. Chongqing: Chongqing University, 2022. (王鑫. 钒渣钙镁复合焙烧—酸浸提钒工艺研究[D]. 重庆: 重庆大学, 2022.

    WANG X. Vanadium slag calcium magnesium composite roasting-acid leaching vanadium process research [D]. Chongqing: Chongqing University, 2022.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(6)

    Article Metrics

    Article views (220) PDF downloads(39) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return