| Citation: | YAN Jiaqi, ZHAO Liang, DONG Hui, FENG Junsheng. Study on the parameters of sodium roasting process of titanium slag from Chaoyang area[J]. IRON STEEL VANADIUM TITANIUM, 2025, 46(4): 8-17. doi: 10.7513/j.issn.1004-7638.2025.04.002 |
| [1] |
LÜ J W, YU Z X, LI J L, et al. Resource characteristics and exploitation prospect of vanadium titano magnetite in Chaoyang, Liaoning province[J]. Non-Ferrous Mining and Metallurgy, 2023, 39(3): 9-11. (吕佳卫, 于泽新, 李玖龙, 等. 辽宁朝阳钒钛磁铁矿资源特点及开发利用前景[J]. 有色矿冶, 2023, 39(3): 9-11.
LÜ J W, YU Z X, LI J L, et al. Resource characteristics and exploitation prospect of vanadium titano magnetite in Chaoyang, Liaoning province[J]. Non-Ferrous Mining and Metallurgy, 2023, 39(3): 9-11.
|
| [2] |
HAN J Q, ZHANG J, ZHANG J H, et al. Recovery of Fe, V and Ti in modified Ti-bearing blast furnace slag[J]. Transactions of Nonferrous Metals Society of China, 2022, 32(1): 333-344. doi: 10.1016/S1003-6326(22)65798-4
|
| [3] |
ZHANG Y M, YI L Y, WANG L N, et al. A novel process for the recovery of iron, titanium and vanadium from vanadium-bearing titanomagnetite: sodium modification-direct reduction coupled process[J]. International Journal of Minerals Metallurgy and Materials, 2017, 24(5): 504-511. doi: 10.1007/s12613-017-1431-4
|
| [4] |
SHI J J, QIU Y C, YU B, et al. Titanium extraction from titania-bearing blast furnace slag: A review[J]. The Journal of the Minerals, Metals and Materials Society, 2022, 74(2): 654-667. doi: 10.1007/s11837-021-05040-y
|
| [5] |
LIU X J, CHEN D S, CHU J L, et al. Recovery of titanium and vanadium from titanium-vanadium slag obtained by direct reduction of titanomagnetite concentrates[J]. Rare Metals, 2022, 41(5): 1688-1696. doi: 10.1007/s12598-015-0532-3
|
| [6] |
JING J F, GUO Y F, CHEN F, et al. A novel sequential leaching process for titanium slag to increase TiO2 grade to prepare boiling chlorinated charges[J]. Hydrometallurgy, 2023, 217.
|
| [7] |
SUI Q Q, DOU Z H, ZHANG T A, et al. Study on the one-step acid conversion of the alkali conversion product of high titanium slag to prepare TiO2 of high purity[J]. Hydrometallurgy, 2022, 211.
|
| [8] |
XUE T Y, WANG L N, QI T, et al. Decomposition kinetics of titanium slag in sodium hydroxide system[J]. Hydrometallurgy, 2009, 95(1-2): 22-27. doi: 10.1016/j.hydromet.2008.04.004
|
| [9] |
ZHANG L, ZHANG L N, WANG M Y, et al. Recovery of titanium compounds from molten Ti-bearing blast furnace slag under the dynamic oxidation condition[J]. Minerals Engineering, 2007, 20(7): 684-693. doi: 10.1016/j.mineng.2007.01.003
|
| [10] |
ZHENG F Q, GUO Y F, LIU S S, et al. Removal of magnesium and calcium from electric furnace titanium slag by H3PO4 oxidation roasting-leaching process[J]. Transactions of Nonferrous Metals Society of China, 2018, 28(2): 356-366. doi: 10.1016/S1003-6326(18)64669-2
|
| [11] |
FAN H L, WANG R X, XU Z F, et al. Migration and enrichment behaviors of Ca and Mg elements during cooling and crystallization of boron-bearing titanium slag melt[J]. Crystals, 2021, 11(8): 888. doi: 10.3390/cryst11080888
|
| [12] |
LIU S S, GUO Y F, QIU G Z, et al. Preparation of Ti-rich material from titanium slag by activation roasting followed by acid leaching[J]. Transactions of Nonferrous Metals Society of China, 2013, 23(4): 1174-1178. doi: 10.1016/S1003-6326(13)62580-7
|
| [13] |
ABDELGALIL M S, EL-BARAWY K, YANG G, et al. The recovery of TiO2 from ilmenite ore by ammonium sulfate roasting–leaching process[J]. Processes, 2023, 11(9): 2570-2587. doi: 10.3390/pr11092570
|
| [14] |
MA J, LI W, FU G Q, et al. Effect of TiO2 on the phase transformation and microstructure evolution of Ti-containing melting slag in the alkali fusion process[J]. Jom, 2024, 76(6): 3021-3027. doi: 10.1007/s11837-024-06558-7
|
| [15] |
CHEN J, JIANG Q, LI K Q, et al. The productive preparation of synthetic rutile from titanium slag via an improved microwave heating and acid-alkali joint leaching approach[J]. Chemical Engineering and Processing-Process Intensification, 2022, 172, 108773.
|
| [16] |
CHEN J, PENG J H, HE A X, et al. Investigation on the decomposition of titanium slag using sodium carbonate for preparing rutile TiO2[J]. Materials Chemistry and Physics, 2022, 290, 126626.
|
| [17] |
MA J, LI W, FU G Q, et al. Effect of roasting characteristics on the alkali fusion behavior and mechanism of melting titanium slag[J]. Journal of Sustainable Metallurgy, 2022, 8(3): 1381-1391. doi: 10.1007/s40831-022-00580-2
|
| [18] |
CHEN J, GUO S H, OMRAN M, et al. Microwave-assisted preparation of nanocluster rutile TiO2 from titanium slag by NaOH-KOH mixture activation[J]. Advanced Powder Technology, 2022, 33(5): 103549.
|
| [19] |
Fan H L. Fundamental research on modification of molten titanium slag from electric furnace and removal of calcium and magnesium impurities[D]. Chongqing: Chongqing University, 2019. (范鹤林. 熔融电炉钛渣改性及钙镁杂质去除的基础研究[D].重庆: 重庆大学, 2019.
Fan H L. Fundamental research on modification of molten titanium slag from electric furnace and removal of calcium and magnesium impurities[D]. Chongqing: Chongqing University, 2019.
|
| [20] |
CHEN W, LIU B G, DING J, et al. Mechanism and kinetics study on sulfuric acid leaching of titanium from NaOH roasting ilmenite[J]. Jom, 2024, 76(9): 5365-5375. doi: 10.1007/s11837-024-06746-5
|
| [21] |
DE O A L B, DA S G D S, DE A P F, et al. Optimization of alkaline roasting to enable acid leaching of titanium from anatase ores[J]. Journal of Sustainable Metallurgy, 2023, 9(1): 183-193. doi: 10.1007/s40831-022-00637-2
|
| [22] |
DONG H G, JIANG T, GUO Y F, et al. Upgrading a Ti-slag by a roast-leach process[J]. Hydrometallurgy, 2012, 113-114: 119-121.
|
| [23] |
LIU J. Research on UGS slag production process[D]. Kunming: Kunming University of Science and Technology, 2013. (刘娟. UGS渣生产工艺研究[D]. 昆明: 昆明理工大学, 2013.
LIU J. Research on UGS slag production process[D]. Kunming: Kunming University of Science and Technology, 2013.
|
| [24] |
KANG J X, GAO L, ZHANG M Y, et al. Synthesis of rutile TiO2 powder by microwave-enhanced roasting followed by hydrochloric acid leaching[J]. Advanced Powder Technology, 2020, 31(3): 1140-1147. doi: 10.1016/j.apt.2019.12.042
|