| Citation: | XIE Xiangzhong, CAI Weitong, GAO Pengfei, ZHANG Yuhui, HAN Shengli, ZHENG Kaihong, PAN Fusheng. Study on microstructure and mechanical properties of bionic bone structure AZ91-Ti cross-composites[J]. IRON STEEL VANADIUM TITANIUM, 2025, 46(4): 43-51, 79. doi: 10.7513/j.issn.1004-7638.2025.04.006 |
| [1] |
BARTHELAT F, RABIEI R. Toughness amplification in natural composites[J]. Journal of the Mechanics and Physics of Solids, 2011, 59(4): 829-840. doi: 10.1016/j.jmps.2011.01.001
|
| [2] |
JOHNSON A P, SABU C, NIVITHA K P, et al. Bioinspired and biomimetic micro- and nanostructures in biomedicine[J]. Journal of Controlled Release, 2022, 343: 724-754. doi: 10.1016/j.jconrel.2022.02.013
|
| [3] |
SHARMA A S, YADAV S, BISWAS K, et al. High-entropy alloys and metallic nanocomposites: processing challenges, microstructure development and property enhancement[J]. Materials Science and Engineering: R: Reports, 2018, 131: 1-42. doi: 10.1016/j.mser.2018.04.003
|
| [4] |
SIDDIQUE S H, HAZELL P J, WANG H, et al. Lessons from nature: 3D printed bio-inspired porous structures for impact energy absorption-A review[J]. Additive Manufacturing, 2022, 58: 103051. doi: 10.1016/j.addma.2022.103051
|
| [5] |
ZHANG J, LIU Z Q, WANG S G, et al. Hierarchically structured W-Cu composite with high strength by reactive melt infiltration[J]. Scripta Materialia, 2025, 259: 116544. doi: 10.1016/j.scriptamat.2025.116544
|
| [6] |
HAN T L, HOU C, ZHAO Z, et al. W-Cu composites with excellent comprehensive properties[J]. Composites Part B: Engineering, 2022, 233: 109664. doi: 10.1016/j.compositesb.2022.109664
|
| [7] |
NAZARI K, TRAN P, TAN P, et al. Advanced manufacturing methods for ceramic and bioinspired ceramic composites: a review[J]. Open Ceramics, 2023, 15: 100399. doi: 10.1016/j.oceram.2023.100399
|
| [8] |
DOU C X, ZHANG M Y, REN D C, et al. Bi-continuous Mg-Ti interpenetrating-phase composite as a partially degradable and bioactive implant material[J]. Journal of Materials Science & Technology, 2022, 146: 211-220.
|
| [9] |
LI Z, MO H T, TIAN J H, et al. A novel Ti/Al interpenetrating phase composite with enhanced mechanical properties[J]. Materials Letters, 2023, 357: 135723.
|
| [10] |
VENKATESH R, HOSSAIN I, MOHANAVEL V, et al. Analysis and optimization of machining parameters of AZ91 alloy nanocomposite with the influences of nano ZrO2 through vacuum diecast process[J]. Heliyon, 2024, 10(15): e34931. doi: 10.1016/j.heliyon.2024.e34931
|
| [11] |
YAO F J, YOU G Q, WANG L, et al. Design, fabrication, microstructure, and mechanical properties of interlayer-free vacuum diffusion bonding Mg/Ti composites[J]. Vacuum, 2022, 199: 110947. doi: 10.1016/j.vacuum.2022.110947
|
| [12] |
YUAN M N, LI L, WANG Z J. Study of the microstructure modulation and phase formation of TiAl3Ti laminated composites[J]. Vacuum, 2018, 157: 481-486. doi: 10.1016/j.vacuum.2018.09.002
|
| [13] |
XIAO L, LIU T T, CHU Y, et al. Effect of Ti particles on the microstructure and mechanical properties of AZ91 magnesium matrix composites[J]. Acta Metallurgica Sinica (English Letters), 2023, 37(3): 513-524.
|
| [14] |
TANG B, LI J B, YE J L, et al. Strengthening mechanism and microstructure of deformable Ti particles reinforced AZ91 composite[J]. Acta Metallurgica Sinica (English Letters), 2022, 35(12): 1935-1945. doi: 10.1007/s40195-022-01428-0
|
| [15] |
GAO P F, HAN S L, ZHANG Y H, et al. Investigation on the interface bonding and reinforcement mechanism of nano Ti/AZ31 magnesium matrix composites[J]. Journal of Materials Research and Technology, 2024, 30: 4908-4919. doi: 10.1016/j.jmrt.2024.04.201
|
| [16] |
LUO H, LI J B, YE J L, et al. Enhancing the mechanical properties and thermal conductivity of Ti/AZ91 composites through integrated extrusion and rolling continuous deformation processing[J]. Journal of Alloys and Compounds, 2024, 1002: 175506. doi: 10.1016/j.jallcom.2024.175506
|
| [17] |
CHEN X, XU J, ZHENG K H, et al. Effect of Ti particles on microstructure and mechanical properties of Mg-9Al-1Zn based composite sheets[J]. Journal of Materials Research and Technology, 2023, 27: 1242-1257. doi: 10.1016/j.jmrt.2023.10.024
|
| [18] |
AN Y M, YANG Y, JIA Y N, et al. Mechanical properties of biomimetic ceramic with Bouligand architecture[J]. Journal of the American Ceramic Society, 2021, 105(4): 2385-2391.
|
| [19] |
ZHANG M Y, ZHAO N, YU Q, et al. On the damage tolerance of 3-D printed Mg-Ti interpenetrating-phase composites with bioinspired architectures[J]. Nat Commun, 2022, 13, 3247.
|
| [20] |
SIVAKUMAR P M, YETISGIN A A, DEMIR E, et al. Polysaccharide-bioceramic composites for bone tissue engineering: a review[J]. International Journal of Biological Macromolecules, 2023, 250: 126237. doi: 10.1016/j.ijbiomac.2023.126237
|
| [21] |
NOGUEIRA L F B, MANIGLIA B C, BUCHET R, et al. Three-dimensional cell-laden collagen scaffolds: From biochemistry to bone bioengineering[J]. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 2021, 110(4): 967-983.
|
| [22] |
SOLEYMANI S, NAGHIB S M. 3D and 4D printing hydroxyapatite-based scaffolds for bone tissue engineering and regeneration[J]. Heliyon, 2023, 9(9): e19363. doi: 10.1016/j.heliyon.2023.e19363
|
| [23] |
BOSKEY A L. Mineralization, structure and function of bone[M]// MARKUS J S, SIMON P R, JOHN P B. Dynamics of bone and cartilage metabolism. Salt Lake City, Academic Press, 2006: 201-212.
|
| [24] |
ZHANG Y, TAN G Q, ZHANG M Y, et al. Bioinspired tungsten-copper composites with Bouligand-type architectures mimicking fish scales[J]. Journal of Materials Science & Technology, 2022, 96: 21-30.
|
| [25] |
ROMANOS G E, DELGADO-RUIZ R A, NICOLAS-SILVENTE A I. Volumetric changes in morse taper connections after implant placement in dense bone. in-vitro study[J]. Materials, 2020, 13(10): 2306. doi: 10.3390/ma13102306
|
| [26] |
SCHMIDT I, PAPASTAVROU A, STEINMANN P. Concurrent consideration of cortical and cancellous bone within continuum bone remodelling[J]. Computer Methods in Biomechanics and Biomedical Engineering, 2020, 24(11): 1274-1285.
|
| [27] |
FAN Z H, LIU H X, DING Z Z, et al. Simulation of cortical and cancellous bone to accelerate Tissue regeneration[J]. Advanced Functional Materials, 2023, 33(33): : 2301839.
|
| [28] |
HUFENBACH W, ULLRICH H J, GUDE M, et al. Manufacture studies and impact behaviour of light metal matrix composites reinforced by steel wires[J]. Archives of Civil and Mechanical Engineering, 2012, 12: 265. doi: 10.1016/j.acme.2012.06.005
|
| [29] |
LI Q Y, LI J, HE G. Compressive properties and damping capacities of magnesium reinforced with continuous steel wire[J]. Materials Science and Engineering: A, 2017, A680: 92.
|
| [30] |
WU S X, WANG S R, WEN D S, et al. Microstructure and mechanical properties of magnesium matrix composites interpenetrated by different reinforcement[J]. Applied Sciences, 2018, 8: 2012. doi: 10.3390/app8112012
|
| [31] |
ZOU C M, LIU Y, YANG X, et al. Effect of sintering neck on compressive mechanical properties of porous titanium[J]. Transactions of Nonferrous Metals Society of China, 2012, 22: s485-s490. doi: 10.1016/S1003-6326(12)61750-6
|
| [32] |
JIANG S, HUANG L J, AN Q, et al. Study on titanium-magnesium composites with bicontinuous structure fabricated by powder metallurgy and ultrasonic infiltration[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2018, 81: 10-15. doi: 10.1016/j.jmbbm.2018.02.017
|
| [33] |
PU D M, WU S F, YANG H, et al. Effect of Ti particles on microstructure and mechanical properties of TiP/AZ91 composites[J]. Journal of Materials Research and Technology, 2023, 22: 1362-1374. doi: 10.1016/j.jmrt.2022.12.028
|
| [34] |
TAN Z, JIANG X Y, XI Z, et al. Fabrication of Zr-based bulk metallic glass lattice structure with high specific strength by laser powder bed fusion[J]. Additive Manufacturing, 2024, 95: 104556. doi: 10.1016/j.addma.2024.104556
|
| [35] |
ZHANG P, ZENG W D, ZHANG F, et al. Fracture toughness of Ti2AlNb alloy with different Al content: Intrinsic mechanism, extrinsic mechanism and prediction model[J]. Journal of Alloys and Compounds, 2023, 952: 170068. doi: 10.1016/j.jallcom.2023.170068
|
| [36] |
ASTM E1820-13. Standard test method for measurement of fracture toughness[S](ASTM International, 2013).
|
| [37] |
ASMUS S M F, SAKAKURA S, PEZZOTTI G. Hydroxyapatite toughened by silver inclusions[J]. Journal of Composite Materials, 2003, 37(23): 2117-2129. doi: 10.1177/002199803036242
|
| [38] |
OUYANG S, LIU Y, HUANG Q, et al. Effect of composition on in vitro degradability of Ti–Mg metal-metal composites[J]. Materials Science and Engineering: C, 2020, 107: 110327. doi: 10.1016/j.msec.2019.110327
|
| [39] |
ZHAO G L, XIN L J, LI L, et al. Cutting force model and damage formation mechanism in milling of 70wt% Si/Al composite[J]. Chinese Journal of Aeronautics, 2022, 36(7): 114-128.
|
| [40] |
PEI Y B, HUANG T, CHEN F, et al. In-situ observation of crack evolution in Ti/Al laminated composite[J]. Composite Interfaces, 2019, 27(5): 435-448.
|