| Citation: | ZHANG Zhao, TENG Aijun, DONG Entao, MA Zhiwei, WANG Jiale, YUAN Zikai, GUO Jie, FANG Qiang. Microstructure tailoring and fatigue crack resistance in precipitation-strengthened TB9 titanium alloy[J]. IRON STEEL VANADIUM TITANIUM, 2025, 46(4): 52-58. doi: 10.7513/j.issn.1004-7638.2025.04.007 |
| [1] |
GAO W J. Impact of cold drawing deformation and aging on microstructure and mechanical property of TB9 titanium alloy[J]. World Nonferrous Metals, 2020(12): 154-155. (高文静. 变形量和时效对TB9钛合金丝材组织和性能影响[J]. 世界有色金属, 2020(12): 154-155.
GAO W J. Impact of cold drawing deformation and aging on microstructure and mechanical property of TB9 titanium alloy[J]. World Nonferrous Metals, 2020(12): 154-155.
|
| [2] |
LI L, LUO B L, YANG H J, et al. Impact of solution and aging treatment on the properties of TB9 alloy and its spring[J]. Titanium Industry Progress, 2012, 29(5): 30-32. (李雷, 罗斌莉, 杨宏进, 等. 固溶时效处理对TB9钛合金棒材组织与性能及其弹簧弹性的影响[J]. 钛工业进展, 2012, 29(5): 30-32.
LI L, LUO B L, YANG H J, et al. Impact of solution and aging treatment on the properties of TB9 alloy and its spring[J]. Titanium Industry Progress, 2012, 29(5): 30-32.
|
| [3] |
WANG J, HUANG L J, JIN W. Effect of heat treatment on mechanical properties and microstructure of TB9 alloy[J]. Rare Metal Materials and Engineering, 2017, 46(S1): 129-133. (王健, 黄鎏杰, 金伟. 热处理对TB9合金力学性能及显微组织的影响[J]. 稀有金属材料与工程, 2017, 46(S1): 129-133.
WANG J, HUANG L J, JIN W. Effect of heat treatment on mechanical properties and microstructure of TB9 alloy[J]. Rare Metal Materials and Engineering, 2017, 46(S1): 129-133.
|
| [4] |
HU M, QIU J K, LEI X F, et al. Precipitation behavior of secondary α phase and mechanical properties of high strength TB9 titanium alloy[J]. Journal of Aeronautical Materials, 2024, 44(2): 159-168. (胡明, 邱建科, 雷晓飞, 等. 高强TB9钛合金次生α相析出行为及力学性能[J]. 航空材料学报, 2024, 44(2): 159-168.
HU M, QIU J K, LEI X F, et al. Precipitation behavior of secondary α phase and mechanical properties of high strength TB9 titanium alloy[J]. Journal of Aeronautical Materials, 2024, 44(2): 159-168.
|
| [5] |
HAN W S, ZHU B H, LI J F, et al. Effect of heat treatment on microstructure and properties of Ti-38644 titanium alloy bar[J]. Heat Treatment of Metals, 2022, 47(10): 185-190. (韩伟松, 朱宝辉, 李建锋, 等. 热处理对Ti-38644钛合金棒材组织和性能的影响[J]. 金属热处理, 2022, 47(10): 185-190.
HAN W S, ZHU B H, LI J F, et al. Effect of heat treatment on microstructure and properties of Ti-38644 titanium alloy bar[J]. Heat Treatment of Metals, 2022, 47(10): 185-190.
|
| [6] |
WANG X M, ZHANG S Q, YUAN Z Y, et al. Effect of heat treatment on mechanical properties of Ti-3Al-8V-6Cr-4Mo-4Zr alloy[J]. Chinese Journal of Materials Research, 2017, 31(6): 409-414. (王雪萌, 张思倩, 袁子尧, 等. 时效处理对Ti-3Al-8V-6Cr-4Mo-4Zr合金力学性能的影响[J]. 材料研究学报, 2017, 31(6): 409-414.
WANG X M, ZHANG S Q, YUAN Z Y, et al. Effect of heat treatment on mechanical properties of Ti-3Al-8V-6Cr-4Mo-4Zr alloy[J]. Chinese Journal of Materials Research, 2017, 31(6): 409-414.
|
| [7] |
SCHMIDT P, EL-CHAIKH A, CHRIST H. Effect of duplex aging on the initiation and propagation of fatigue cracks in the solute-rich metastable β titanium alloy Ti 38-644[J]. Metallurgical and Materials Transactions A, 2011, 42: 2652-2667. doi: 10.1007/s11661-011-0662-7
|
| [8] |
DONG E T, TENG A J, GENG N T, et al. Evolution of microstructure and mechanical properties of TB9 alloy bar and wire in the production process[J]. Development and Application of Materials, 2024, 39(4): 56-65. (董恩涛, 滕艾均, 耿乃涛, 等. TB9钛合金棒线材制备过程中微观组织和力学性能演变[J]. 材料开发与应用, 2024, 39(4): 56-65.
DONG E T, TENG A J, GENG N T, et al. Evolution of microstructure and mechanical properties of TB9 alloy bar and wire in the production process[J]. Development and Application of Materials, 2024, 39(4): 56-65.
|
| [9] |
SHANG Q H, GUO J M, WANG G D, et al. Effects of solution and aging treatment on microstrucure and mechanical properties of TB9 titanium alloy[J]. Hot Working Technology, 2023, 52(14): 147-149. (尚庆慧, 郭金明, 王国栋, 等. 固溶和时效处理对TB9钛合金显微组织及力学性能的影响[J]. 热加工工艺, 2023, 52(14): 147-149.
SHANG Q H, GUO J M, WANG G D, et al. Effects of solution and aging treatment on microstrucure and mechanical properties of TB9 titanium alloy[J]. Hot Working Technology, 2023, 52(14): 147-149.
|
| [10] |
LI S J, HU F C, MA L Y, et al. Effect of aging treatment on microstructure and properties of solution treated and cold-drawn TB9 titanium alloy[J]. Heat Treatment of Metals, 2024, 49(9): 251-254. (李世键, 胡福常, 马蓼奕, 等. 时效处理对固溶冷拉态TB9钛合金组织与性能的影响[J]. 金属热处理, 2024, 49(9): 251-254.
LI S J, HU F C, MA L Y, et al. Effect of aging treatment on microstructure and properties of solution treated and cold-drawn TB9 titanium alloy[J]. Heat Treatment of Metals, 2024, 49(9): 251-254.
|
| [11] |
CUI W, GUO A. Microstructures and properties of biomedical TiNbZrFe β-titanium alloy under aging conditions[J]. Materials Science and Engineering: A, 2009, 527(1-2): 258-262. doi: 10.1016/j.msea.2009.08.057
|
| [12] |
KOYAMA M, ZHANG Z, WANG M, et al. Bone-like crack resistance in hierarchical metastable nanolaminate steels[J]. Science, 2017, 355(6329): 1055-1057. doi: 10.1126/science.aal2766
|
| [13] |
ZHANG Z, KOYAMA M, WANG M, et al. Fatigue resistance of laminated and non-laminated TRIP-maraging steels: Crack roughness vs tensile strength[J]. Metallurgical and Materials Transactions A, 2019, 50(3): 1142-1145. doi: 10.1007/s11661-018-5081-6
|
| [14] |
DONG R, ZHANG X, KOU H, et al. Texture evolution associated with the preferential recrystallization during annealing process in a hot-rolled near β titanium alloy[J]. Journal of Materials Research and Technology, 2021, 12: 63-73. doi: 10.1016/j.jmrt.2021.02.062
|
| [15] |
WILLIAMS J C. Titanium and titanium alloys: scientific and technological aspects volume 3[M]. Springer Science & Business Media, 2013.
|
| [16] |
HUANG J, WANG Z, ZHOU J. Cyclic deformation response of β-annealed Ti-5Al-5V-5Mo-3Cr alloy under compressive loading conditions[J]. Metallurgical and Materials Transactions A, 2011, 42: 2868-2880. doi: 10.1007/s11661-011-0705-0
|
| [17] |
BUCHINGER L, CHENG A S, STANZL S, et al. The cyclic stress—strain response and dislocation structures of Cu 16 at. %Al alloy III: Single crystals fatigued at low strain amplitudes[J]. Materials Science and Engineering, 1986, 80(2): 155-167. doi: 10.1016/0025-5416(86)90194-1
|
| [18] |
KRUPP U, FLOER W, LEI J, et al. Mechanisms of short-fatigue-crack initiation and propagation in a β-Ti alloy[J]. Philosophical Magazine A, 2002, 82(17-18): 3321-3332.
|
| [19] |
GAO T, XUE H, SUN Z, et al. Investigation of crack initiation mechanism of a precipitation hardened TC11 titanium alloy under very high cycle fatigue loading[J]. Materials Science and Engineering: A, 2020, 776: 138989. doi: 10.1016/j.msea.2020.138989
|
| [20] |
ODA Y, FURUYA Y, NOGUCHI H, et al. AFM and SEM observation on mechanism of fatigue crack growth in an Fe-Si single crystal[J]. International Journal of Fracture, 2002, 113(3): 213-231. doi: 10.1023/A:1014211617958
|
| [21] |
PIPPAN R, STROBL G, KREUZER H, et al. Asymmetric crack wake plasticity–a reason for roughness induced crack closure[J]. Acta materialia, 2004, 52(15): 4493-4502. doi: 10.1016/j.actamat.2004.06.014
|
| [22] |
ELBER W. The significance of fatigue crack closure[M]//ASTM International, 1971.
|