Volume 46 Issue 4
Aug.  2025
Turn off MathJax
Article Contents
ZOU Shengguang, HE Mingtao, WANG Dafeng, JIANG Tong, ZHOU Honggang, ZHANG Wenzhi, HE Yifan. Research on the microstructure and properties of titanium alloy weld metal by laser-arc hybrid welding with different filler wires[J]. IRON STEEL VANADIUM TITANIUM, 2025, 46(4): 59-65. doi: 10.7513/j.issn.1004-7638.2025.04.008
Citation: ZOU Shengguang, HE Mingtao, WANG Dafeng, JIANG Tong, ZHOU Honggang, ZHANG Wenzhi, HE Yifan. Research on the microstructure and properties of titanium alloy weld metal by laser-arc hybrid welding with different filler wires[J]. IRON STEEL VANADIUM TITANIUM, 2025, 46(4): 59-65. doi: 10.7513/j.issn.1004-7638.2025.04.008

Research on the microstructure and properties of titanium alloy weld metal by laser-arc hybrid welding with different filler wires

doi: 10.7513/j.issn.1004-7638.2025.04.008
More Information
  • Received Date: 2024-09-30
    Available Online: 2025-08-31
  • Publish Date: 2025-08-31
  • To elucidate the evolution mechanism of the microstructure and properties of the titanium alloy during the welding process, deposited metal was prepared by oscillating laser-MIG hybrid welding with Ti-6Al-4V and Ti-4Al-3V-1.5Zr welding wires. Titanium alloy welding metal was characterized by X-ray detection, OM, SEM and EBSD to examine defects, tissue, phase composition, grain size, and fracture morphology. The tensile testing machine, impact testing machine and Vickers hardness instrument were employed to evaluate the strength, impact force, and hardness of the deposited metal. The results indicate that there are no obvious pores and cracks in the oscillating laser-arc hybrid welding titanium alloy. The deposited metal from Ti-6Al-4V wire consists of needle-like α phase and mesh-like β phase, with fine crystal grains averaging approximately 7.96 µm in size. The hardness (HV0.2), tensile strength, and impact absorption energy were measured at 257, 1057 MPa and 41.7 J, respectively. In contract, the deposited metal from Ti-4Al-3V-1.5Zr wire is primarily composed of lamellar α phase, with larger grains averaging 8.96 µm. And this deposited metal exhibits lower hardness and tensile strength but relatively higher impact absorption energy of 49.6 J. These differences are attributed to the melting process of oscillating laser welding, the second-phase enhancement and grain refinement induced by vanadium Ti-6Al-4V.
  • loading
  • [1]
    GAO Y N, ZHANG S, LIU J, et al. Joining process, microstructure and properties of ultra-thin plate TA1/304 dissimilar metals[J/OL]. Welding & Joining, 1-7[2024-10-05]. (郜雅楠, 张帅, 刘杰, 等. 超薄板TA1/304异种金属连接工艺、组织及性能[J/OL]. 焊接, 1-7[2024-10-05].

    GAO Y N, ZHANG S, LIU J, et al. Joining process, microstructure and properties of ultra-thin plate TA1/304 dissimilar metals[J/OL]. Welding & Joining, 1-7[2024-10-05].
    [2]
    YADAV P, SAXENA K K. Effect of heat-treatment on microstructure and mechanical properties of Ti alloys: an overview[J]. Materials Today: Proceedings, 2020, 26: 2546-2557. doi: 10.1016/j.matpr.2020.02.541
    [3]
    LIU G Q, FENG C J, XIN L, et al. Preparation and microstructure of diffused Ti-Al-Si coatings on Ti-6Al-4V alloy[J/OL]. Journal of Chinese Society for Corrosion and Protection, 1-18[2024-10-05]. (刘国强, 冯长杰, 辛丽, 等. 钛合金表面Ti-Al-Si扩散涂层的制备和显微结构[J/OL]. 中国腐蚀与防护学报, 1-18[2024-10-05].

    LIU G Q, FENG C J, XIN L, et al. Preparation and microstructure of diffused Ti-Al-Si coatings on Ti-6Al-4V alloy[J/OL]. Journal of Chinese Society for Corrosion and Protection, 1-18[2024-10-05].
    [4]
    MOTYKA M. Martensite formation and decomposition during traditional and AM processing of two phase titanium alloys—An overview[J]. Metals, 2021, 11(3): 481. doi: 10.3390/met11030481
    [5]
    LIU Q M, ZHANG Z H, LIU S F, et al. Application and development of titanium alloy in aerospace and military hardware[J]. Journal of Iron and Steel Research, 2015, 27(3): 1-4. (刘全明, 张朝晖, 刘世锋, 等. 钛合金在航空航天及武器装备领域的应用与发展[J]. 钢铁研究学报, 2015, 27(3): 1-4.

    LIU Q M, ZHANG Z H, LIU S F, et al. Application and development of titanium alloy in aerospace and military hardware[J]. Journal of Iron and Steel Research, 2015, 27(3): 1-4.
    [6]
    LING Z Y. Research on titanium alloy sheets and bending properties under the compound energy-field with temperature, ultrasonic vibration and speed[D]. Shenyang: Shenyang Aerospace University, 2022. (凌志远. 温度/超声/速度复合能场下钛合金板材及弯曲性能研究[D]. 沈阳: 沈阳航空航天大学, 2022.

    LING Z Y. Research on titanium alloy sheets and bending properties under the compound energy-field with temperature, ultrasonic vibration and speed[D]. Shenyang: Shenyang Aerospace University, 2022.
    [7]
    DU J, WEI Z Y, WANG X, et al. Numerical simulation and experimental research of fused deposition for forming large-size thin-walled parts[J]. Machinery Design & Manufacture, 2016(8): 86-89, 93. (杜军, 魏正英, 王鑫, 等. 大型薄壁件熔融成形数值计算与工艺实验研究[J]. 机械设计与制造, 2016(8): 86-89, 93. doi: 10.3969/j.issn.1001-3997.2016.08.023

    DU J, WEI Z Y, WANG X, et al. Numerical simulation and experimental research of fused deposition for forming large-size thin-walled parts[J]. Machinery Design & Manufacture, 2016(8): 86-89, 93. doi: 10.3969/j.issn.1001-3997.2016.08.023
    [8]
    WANG Y. Induction re-melt deposit welding for aluminum cladding to copper[D]. Nanjing: Nanjing University of Science & Technology, 2012. (汪云. 铜基体表面感应熔敷铝基材料[D]. 南京: 南京理工大学, 2012.

    WANG Y. Induction re-melt deposit welding for aluminum cladding to copper[D]. Nanjing: Nanjing University of Science & Technology, 2012.
    [9]
    CHEN W. Microstructure and mechanical property control of CMT arc additive manufacturing TC4 titanium alloy[D]. Nanchang: Nanchang University, 2019. (陈伟. CMT电弧增材制造TC4钛合金组织及力学性能调控[D]. 南昌: 南昌航空大学, 2019.

    CHEN W. Microstructure and mechanical property control of CMT arc additive manufacturing TC4 titanium alloy[D]. Nanchang: Nanchang University, 2019.
    [10]
    HU J, TAO M P, TANG J Y. Study on forming process and heat treatment behavior of 3D print TC4 titanium alloy[J]. Hot Working Technology, 2017, 46(16): 220-224. (胡婧, 陶梅平, 唐金颖. 3D打印TC4钛合金的成形工艺与热处理行为研究[J]. 热加工工艺, 2017, 46(16): 220-224.

    HU J, TAO M P, TANG J Y. Study on forming process and heat treatment behavior of 3D print TC4 titanium alloy[J]. Hot Working Technology, 2017, 46(16): 220-224.
    [11]
    GONCALO P, FILOMENO M, STEWART W. Laser stabilization of GMAW additive manufacturing of Ti-6Al-4V components[J]. Journal of Materials Processing Technology, 2019, 272: 1-8.
    [12]
    YAO Y L, FENG N Q. Automatic identification of robot weld defect image based on artificial neural network[J]. Machinery Design & Manufacture, 2023(6): 268-271, 276. (姚迎乐, 冯乃勤. 人工神经网络的机器人焊缝缺陷图像自动辨识[J]. 机械设计与制造, 2023(6): 268-271, 276. doi: 10.3969/j.issn.1001-3997.2023.06.056

    YAO Y L, FENG N Q. Automatic identification of robot weld defect image based on artificial neural network[J]. Machinery Design & Manufacture, 2023(6): 268-271, 276. doi: 10.3969/j.issn.1001-3997.2023.06.056
    [13]
    GAO P F, FAN J K, ZHANG J, et al. The influence of interlayer temperature on microstructure and properties of high nitrogen steel fabricated by arc additive manufacturing[J/OL]. Acta Armamentari, 1-12[2024-07-10]. (高鹏飞, 范霁康, 张建, 等. 层间温度对高氮钢电弧增材组织与性能的影响[J/OL]. 兵工学报, 1-12[2024-07-10].

    GAO P F, FAN J K, ZHANG J, et al. The influence of interlayer temperature on microstructure and properties of high nitrogen steel fabricated by arc additive manufacturing[J/OL]. Acta Armamentari, 1-12[2024-07-10].
    [14]
    LUAN Z F, DI X J, LI C N, et al. Effect of Al and Mg elements on the microstructure and mechanical properties of the fused metal[J]. Transactions of the China Welding Institution, 2022, 43(12): 20-26. (栾宗锋, 邸新杰, 利成宁, 等. Al和Mg元素对吉帕级熔敷金属组织和力学性能的影响[J]. 焊接学报, 2022, 43(12): 20-26. doi: 10.12073/j.hjxb.20211201001

    LUAN Z F, DI X J, LI C N, et al. Effect of Al and Mg elements on the microstructure and mechanical properties of the fused metal[J]. Transactions of the China Welding Institution, 2022, 43(12): 20-26. doi: 10.12073/j.hjxb.20211201001
    [15]
    YAO X Z, LI H J, YANG Z W, et al. Tailoring the microstructure and mechanical properties of wire arc additive manufactured Ti-6Al-4V alloy by trace TiC powder addition[J]. Transactions of the China Welding Institution, 2024, 45(6): 12-19. (姚兴中, 李会军, 杨振文, 等. 微量TiC粉末合金化改善电弧增材制造Ti-6Al-4V合金的组织和性能[J]. 焊接学报, 2024, 45(6): 12-19. doi: 10.12073/j.hjxb.20230422001

    YAO X Z, LI H J, YANG Z W, et al. Tailoring the microstructure and mechanical properties of wire arc additive manufactured Ti-6Al-4V alloy by trace TiC powder addition[J]. Transactions of the China Welding Institution, 2024, 45(6): 12-19. doi: 10.12073/j.hjxb.20230422001
    [16]
    ZHANG Z Q, LI H Q, HE S W, et al. Study on microstructure characterization by laser and CMT-P arc hybrid additive components[J]. Materials Protection, 2023, 56(10): 74-82. (张志强, 李涵茜, 贺世伟, 等. 激光与CMT-P电弧复合增材构件的微观组织特征研究[J]. 材料保护, 2023, 56(10): 74-82.

    ZHANG Z Q, LI H Q, HE S W, et al. Study on microstructure characterization by laser and CMT-P arc hybrid additive components[J]. Materials Protection, 2023, 56(10): 74-82.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(5)

    Article Metrics

    Article views (102) PDF downloads(7) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return