| Citation: | SU Dagang, LU Li, LONG Zhaoyong, ZHOU Xiaojun, ZHOU Xianliang, AO Jinqing. Preparation and properties study of ternary composite admixture consisting of silica fume, yellow phosphorus slag, and high titanium blast furnace slag[J]. IRON STEEL VANADIUM TITANIUM, 2025, 46(4): 80-87. doi: 10.7513/j.issn.1004-7638.2025.04.011 |
| [1] |
ZHAO Y, SHEN G H, ZHU L L, et al. Fractal dimension-based fine-scale damage law for uniaxial compression test of 3D printed steel slag cementitious materials[J]. Acta Materiae Compositae Sinica, 2024, 42(4): 1-10. (赵宇, 沈光海, 朱伶俐, 等. 基于分形维数的3D打印钢渣水泥基材料单轴压缩试验的细观破坏规律[J]. 复合材料学报, 2024, 42(4): 1-10.
ZHAO Y, SHEN G H, ZHU L L, et al. Fractal dimension-based fine-scale damage law for uniaxial compression test of 3D printed steel slag cementitious materials[J]. Acta Materiae Compositae Sinica, 2024, 42(4): 1-10.
|
| [2] |
SONG Q, YANG Y X, XU S P, et al. Research progress in performance and enhancement of coal gangue concrete[J]. Coal Science and Technology, 2025, 53(2): 402-420. (宋强, 杨玉鑫, 许世鹏, 等. 煤矸石混凝土性能及提升研究进展[J]. 煤炭科学技术, 2025, 53(2): 402-420.
SONG Q, YANG Y X, XU S P, et al. Research progress in performance and enhancement of coal gangue concrete[J]. Coal Science and Technology, 2025, 53(2): 402-420.
|
| [3] |
GUO Y, LUO L, LIU T, et al. A review of low-carbon technologies and projects for the global cement industry[J]. Journal of Environmental Sciences, 2024, 136: 682-697. doi: 10.1016/j.jes.2023.01.021
|
| [4] |
BENHELAL E, SHAMSAEI E, RASHID M I. Challenges against CO2 abatement strategies in cement industry: A review[J]. Journal of Environmental Sciences, 2021, 104: 84-101. doi: 10.1016/j.jes.2020.11.020
|
| [5] |
ZHENG Y L, JI S, LU C H, et al. Preparation technology and mechanism of cementitious material based on solid waste phosphogypsum[J]. Acta Materiae Compositae Sinica, 2024, 41(3): 1436-1446. (郑玉龙, 嵇帅, 陆春华, 等. 基于固废磷石膏制备胶凝材料的工艺与机制[J]. 复合材料学报, 2024, 41(3): 1436-1446.
ZHENG Y L, JI S, LU C H, et al. Preparation technology and mechanism of cementitious material based on solid waste phosphogypsum[J]. Acta Materiae Compositae Sinica, 2024, 41(3): 1436-1446.
|
| [6] |
GU X W, ZHANG Y N, ZHANG W F, et al. Research status and prospect of high value building materials utilization of bulk industrial solid waste[J]. Metal Mine, 2022, 51(1): 1-13. (顾晓薇, 张延年, 张伟峰, 等. 大宗工业固废高值建材化利用研究现状与展望[J]. 金属矿山, 2022, 51(1): 1-13.
GU X W, ZHANG Y N, ZHANG W F, et al. Research status and prospect of high value building materials utilization of bulk industrial solid waste[J]. Metal Mine, 2022, 51(1): 1-13.
|
| [7] |
WU J, ZHANG J S, TAN Y Z, et al. Mechanical properties and microscopic mechanism of phosphogypsum-slag-lime solidified sediment[J]. Journal of Basic Science and Engineering, 2024, 32(5): 1360-1373. (吴军, 张金生, 谈云志, 等. 磷石膏-矿渣-石灰固化底泥力学性能及微观机理[J]. 应用基础与工程科学学报, 2024, 32(5): 1360-1373.
WU J, ZHANG J S, TAN Y Z, et al. Mechanical properties and microscopic mechanism of phosphogypsum-slag-lime solidified sediment[J]. Journal of Basic Science and Engineering, 2024, 32(5): 1360-1373.
|
| [8] |
LI M Y, ZHANG C, LIANG R, et al. Research progress of blast furnace slag based photocatalytic materials in wastewater treatment[J]. Journal of the Chinese Ceramic Society, 2023, 51(1): 270-282. (李明阳, 张晨, 梁锐, 等. 高炉渣基光催化材料在废水处理领域的研究进展[J]. 硅酸盐学报, 2023, 51(1): 270-282.
LI M Y, ZHANG C, LIANG R, et al. Research progress of blast furnace slag based photocatalytic materials in wastewater treatment[J]. Journal of the Chinese Ceramic Society, 2023, 51(1): 270-282.
|
| [9] |
LIU Z, LAI Z Y, LUO X Z, et al. Effect of titanium slag on the properties of magnesium phosphate cement[J]. Construction and Building Materials, 2022, 343.
|
| [10] |
JING J F, GUO Y F, ZHENG F Q, et al. Development status on comprehensive utilization of Ti-bearing blast furnace slag[J]. Metal Mine, 2018, 47(4): 185-191. (景建发, 郭宇峰, 郑富强, 等. 含钛高炉渣综合利用的研究进展[J]. 金属矿山, 2018, 47(4): 185-191.
JING J F, GUO Y F, ZHENG F Q, et al. Development status on comprehensive utilization of Ti-bearing blast furnace slag[J]. Metal Mine, 2018, 47(4): 185-191.
|
| [11] |
WANG W, WANG J, LIANG Y H. Feasibility analysis of high-titanium heavy slag as aggregate for asphalt mixture[J]. Iron Steel Vanadium Titanium, 2022, 43(4): 87-93. (王伟, 汪杰, 梁月华. 高钛重矿渣作为集料用于沥青混合料的可行性分析研究[J]. 钢铁钒钛, 2022, 43(4): 87-93.
WANG W, WANG J, LIANG Y H. Feasibility analysis of high-titanium heavy slag as aggregate for asphalt mixture[J]. Iron Steel Vanadium Titanium, 2022, 43(4): 87-93.
|
| [12] |
LI X Y, LI J, LU Z Y, et al. Preparation and properties of reactive powder concrete by using titanium slag aggregates[J]. Construction and Building Materials, 2020, 234.
|
| [13] |
TAO M, LU D M, SHI Y, et al. Utilization and life cycle assessment of low activity solid waste as cementitious materials: A case study of titanium slag and granulated blast furnace slag[J]. Science of the Total Environment, 2022, 849: 157797. doi: 10.1016/j.scitotenv.2022.157797
|
| [14] |
WANG S P, LI J J, YUN X X, et al. Effect of extracted titanium tailing slag on the properties of alkali-activated fly ash-ground blast furnace slag binder[J]. Frontiers in Materials, 2022, 8.
|
| [15] |
WANG J, LIANG Y H. Study on the effect of electric furnace steel slag-fly ash compound admixture on the properties of cement mortar[J]. Iron Steel Vanadium Titanium, 2022, 43(5): 123-128. (汪杰, 梁月华. 电炉钢渣-粉煤灰复合掺合料水泥胶砂性能研究[J]. 钢铁钒钛, 2022, 43(5): 123-128.
WANG J, LIANG Y H. Study on the effect of electric furnace steel slag-fly ash compound admixture on the properties of cement mortar[J]. Iron Steel Vanadium Titanium, 2022, 43(5): 123-128.
|
| [16] |
MING Y, WEI Y, LI L, et al. Preparation and properties of ultra-fine mineral admixtures with high activity by steel slag-mineral slag-fly ash[J]. Highway, 2023, 68(5): 289-295. (明阳, 卫煜, 李玲, 等. 钢渣-矿渣-粉煤灰制备高活性超细矿物掺合料及性能研究[J]. 公路, 2023, 68(5): 289-295.
MING Y, WEI Y, LI L, et al. Preparation and properties of ultra-fine mineral admixtures with high activity by steel slag-mineral slag-fly ash[J]. Highway, 2023, 68(5): 289-295.
|
| [17] |
LI Y Q, NI Y J, LI F F, et al. Properties of tailings powder-fly ash-cement composite cementitious system[J]. Bulletin of the Chinese Ceramic Society, 2024, 43(1): 236-245. (李永清, 倪勇军, 李芳芳, 等. 尾泥微粉-粉煤灰-水泥复合胶凝体系性能研究[J]. 硅酸盐通报, 2024, 43(1): 236-245.
LI Y Q, NI Y J, LI F F, et al. Properties of tailings powder-fly ash-cement composite cementitious system[J]. Bulletin of the Chinese Ceramic Society, 2024, 43(1): 236-245.
|
| [18] |
JIAO D W, SHI C J, YUAN Q, et al. Effect of constituents on rheological properties of fresh concrete-A review[J]. Cement and Concrete Composites, 2017, 83: 146-159. doi: 10.1016/j.cemconcomp.2017.07.016
|
| [19] |
HARBEC D, ZIDOL A, TAGNIT-HAMOU A, et al. Mechanical and durability properties of high performance glass fume concrete and mortars[J]. Construction and Building Materials, 2017, 134: 142-156. doi: 10.1016/j.conbuildmat.2016.12.018
|
| [20] |
SHAN Y C, ZHANG L H, LIU L B. Study on the macroscopic properties of phosphorus slag composite cementitious materials based on hydration perspective[J]. Journal of Building Engineering, 2023, 78.
|
| [21] |
CHEN M, SUN Z P, LIU J S. State of the art review on activating techniques and mechanism of phosphorus slag[J]. Materials Reports, 2013, 27(21): 112-116. (陈明, 孙振平, 刘建山. 磷渣活性激发方法及机理研究进展[J]. 材料导报, 2013, 27(21): 112-116.
CHEN M, SUN Z P, LIU J S. State of the art review on activating techniques and mechanism of phosphorus slag[J]. Materials Reports, 2013, 27(21): 112-116.
|
| [22] |
LIU X Y, LIU X M, ZHANG Z Q. Recycling and comprehensive utilization of yellow phosphorus slag in building materials: A review[J]. Construction and Building Materials, 2023, 396.
|