| Citation: | HE Wenchao, LIU Zenghao, LÜ Xuewei. Study on the motion and heat transfer behavior of semi-steel droplet during centrifugal granulation-water curtain cooling process[J]. IRON STEEL VANADIUM TITANIUM, 2025, 46(4): 111-118. doi: 10.7513/j.issn.1004-7638.2025.04.015 |
| [1] |
LUO L G, PANG J M, LI X, et al. Separation of iron and titanium by reduction grinding separation process of vanadium titanium magnetite[J]. Iron and Steel, 2024, 59(8): 13-18. (罗林根, 庞建明, 李新, 等. 钒钛磁铁矿还原-磨选工艺分离铁钛试验[J]. 钢铁, 2024, 59(8): 13-18.
LUO L G, PANG J M, LI X, et al. Separation of iron and titanium by reduction grinding separation process of vanadium titanium magnetite[J]. Iron and Steel, 2024, 59(8): 13-18.
|
| [2] |
WANG H B, LI J, ZHANG G H. Efficient recovery of ilmenite from vanadium bearing titanomagnetite in Panxi area[J]. Iron Steel Vanadium Titanium, 2020, 41(3): 23-29. (王洪彬, 李金, 张国华. 攀西钒钛磁铁矿中钛铁矿高效回收工艺研究[J]. 钢铁钒钛, 2020, 41(3): 23-29. doi: 10.7513/j.issn.1004-7638.2020.03.003
WANG H B, LI J, ZHANG G H. Efficient recovery of ilmenite from vanadium bearing titanomagnetite in Panxi area[J]. Iron Steel Vanadium Titanium, 2020, 41(3): 23-29. doi: 10.7513/j.issn.1004-7638.2020.03.003
|
| [3] |
WU D P, WANG X B, ZHAO L Y. Research and practice on optimization of grinding and classification process of low-grade vanadium titanomagnetite[J]. Iron Steel Vanadium Titanium, 2022, 43(5): 117-122. (吴登平, 王祥波, 赵刘阳. 低品位钒钛磁铁矿磨矿分级工艺优化研究与实践[J]. 钢铁钒钛, 2022, 43(5): 117-122.
WU D P, WANG X B, ZHAO L Y. Research and practice on optimization of grinding and classification process of low-grade vanadium titanomagnetite[J]. Iron Steel Vanadium Titanium, 2022, 43(5): 117-122.
|
| [4] |
LUO J H. Thoughts and countermeasures on the development of Panzhihua vanadium and titanium industry[J]. Iron Steel Vanadium Titanium, 2023, 44(6): 9-16. (罗金华. 攀枝花钒钛产业发展思考及对策建议[J]. 钢铁钒钛, 2023, 44(6): 9-16.
LUO J H. Thoughts and countermeasures on the development of Panzhihua vanadium and titanium industry[J]. Iron Steel Vanadium Titanium, 2023, 44(6): 9-16.
|
| [5] |
ZHANG F. Current situation and development orientation of utilization for semisteel produced in smelting of titanium slag at PZH steel[J]. Sichuan Metallurgy, 2020, 42(4): 12-19. (张峰. 攀钢钛渣副产半钢利用现状及发展方向[J]. 四川冶金, 2020, 42(4): 12-19.
ZHANG F. Current situation and development orientation of utilization for semisteel produced in smelting of titanium slag at PZH steel[J]. Sichuan Metallurgy, 2020, 42(4): 12-19.
|
| [6] |
LIAO R H. Study of carburisation and desulfuration for semisteel produced in smelting of titanium slag[J]. Iron Steel Vanadium Titanium, 2003, 24(3): 11-16. (廖荣华. 钛渣副产半钢脱硫增碳试验研究[J]. 钢铁钒钛, 2003, 24(3): 11-16. doi: 10.3969/j.issn.1004-7638.2003.03.003
LIAO R H. Study of carburisation and desulfuration for semisteel produced in smelting of titanium slag[J]. Iron Steel Vanadium Titanium, 2003, 24(3): 11-16. doi: 10.3969/j.issn.1004-7638.2003.03.003
|
| [7] |
HUANG Q Y, HE W C, LÜ X W. Preparation of iron powders with semi-steel by rotary cup atomizer[J]. Journal of Iron and Steel Research, 2020, 32(7): 563-570. (黄青云, 贺文超, 吕学伟. 电炉半钢转杯离心粒化制备铁粉工艺[J]. 钢铁研究学报, 2020, 32(7): 563-570.
HUANG Q Y, HE W C, LÜ X W. Preparation of iron powders with semi-steel by rotary cup atomizer[J]. Journal of Iron and Steel Research, 2020, 32(7): 563-570.
|
| [8] |
LIU S M, ZHAO J. Develoment and prospect of iron and steel powder in China[C]// 2007 CSM Annual Meeting Proceedings. Beijing: Chinese Society for Metals, 2007. (刘世民, 赵晶. 我国钢铁粉末的发展与展望[C]//2007中国钢铁年会. 北京: 中国金属学会, 2007.
LIU S M, ZHAO J. Develoment and prospect of iron and steel powder in China[C]// 2007 CSM Annual Meeting Proceedings. Beijing: Chinese Society for Metals, 2007.
|
| [9] |
LIU Y, NIU S, LI F, et al. Preparation of amorphous Fe-based magnetic powder by water atomization[J]. Powder Technology. 2011, 213(1-3): 36-40.
|
| [10] |
LIU J Q, DONG Y N, WANG P, et al. Simulation and experiment investigations on fabrication of Fe-based amorphous powders by a novel atomization process equipped with assisted gas nozzles[J]. Journal of Iron and Steel Research International, 2022, 30(6): 1142-1155.
|
| [11] |
MIZUOCHI T, AKIYAMA T, SHIMADA T, et al. Feasibility of rotary cup atomizer for slag granulation[J]. ISIJ International, 2001, 41(12): 1423-1428. doi: 10.2355/isijinternational.41.1423
|
| [12] |
XIE J W, ZHAO Y Y, DUNKLEY J J. Effects of processing conditions on powder particle size and morphology in centrifugal atomisation of tin[J]. Powder Metallurgy, 2013, 47(2): 168-172.
|
| [13] |
LIU J X, YU Q B, DUAN W J, et al. Experimental investigation on ligament formation for molten slag granulation[J]. Applied Thermal Engineering Design Processes Equipment Economics, 2014, 73(1): 888-893.
|
| [14] |
PLOOKPHOL T, WISUTMETHANGOON S, GONSRANG S. Influence of process parameters on SAC305 lead-free solder powder produced by centrifugal atomization[J]. Powder Technology, 2011, 214(3): 506-512. doi: 10.1016/j.powtec.2011.09.015
|
| [15] |
LIU J X, YU Q B, GUO Q. Experimental investigation of liquid disintegration by rotary cups[J]. Chemical Engineering Science, 2012, 73(1): 44-50.
|
| [16] |
ZHU X, ZHANG H, TAN Y, et al. Analogue experimental study on centrifugal-air blast granulation for molten slag[J]. Applied Thermal Engineering, 2015, 88: 157-164. doi: 10.1016/j.applthermaleng.2014.11.077
|
| [17] |
LIU J X, YU Q B, LI P, et al. Cold experiments on ligament formation for blast furnace slag granulation[J]. Applied Thermal Engineering, 2012, 40: 351-357. doi: 10.1016/j.applthermaleng.2012.01.063
|
| [18] |
HE W C, LÜ X W, PAN F F, et al. Novel preparation process of iron powders with semisteel by rotary cup atomizer[J]. Powder Technology, 2019, 356: 1087-1096. doi: 10.1016/j.powtec.2019.09.009
|
| [19] |
LI H P, TSAKIROPOULOS P. Droplet dynamic and solidification progress during rotating disk centrifugal atomization[J]. The Chinese Journal of Nonferrous Metals, 2006, 16(5): 793-99. (李会平, P. Tsakiropoulos. 旋转盘离心雾化熔滴飞行动力学与凝固进程[J]. 中国有色金属学报, 2006, 16(5): 793-99.
LI H P, TSAKIROPOULOS P. Droplet dynamic and solidification progress during rotating disk centrifugal atomization[J]. The Chinese Journal of Nonferrous Metals, 2006, 16(5): 793-99.
|
| [20] |
QIN Y L, LÜ X W, BAI C G, et al. Mechanism of dry molten slag granulation using a rotating multi-nozzle cup atomizer[J]. Steel research international, 2014, 85(1): 44-52. doi: 10.1002/srin.201300007
|
| [21] |
WANG H, DING B, LIU X Y, et al. Solidification behaviors of a molten blast furnace slag droplet cooled by air[J]. Applied Thermal Engineering, 2017, 127: 915-24. doi: 10.1016/j.applthermaleng.2017.07.215
|
| [22] |
ZHU X, DING B, WANG H, et al. Numerical study on solidification behaviors of a molten slag droplet in the centrifugal granulation and heat recovery system[J]. Applied Thermal Engineering, 2018, 130: 1033-1043. doi: 10.1016/j.applthermaleng.2017.11.080
|
| [23] |
LEE E S, AHN S. Solidification progress and heat transfer analysis of gas-atomized alloy droplets during spray forming[J]. Acta Metallurgica Et Materialia, 1994, 42(9): 3231-3243. doi: 10.1016/0956-7151(94)90421-9
|
| [24] |
ZHAO Y Y. Analysis of flow development in centrifugal atomization: Part I. Film thickness of a fully spreading melt[J]. Modelling & Simulation in Materials Science & Engineering, 2004, 12(12): 959-971.
|
| [25] |
HE W C, LÜ X W, PAN F F, et al. Granulation of ferrosilicon alloy by rotary multi-nozzles cup atomizer: Granulation behavior and model formation[J]. Advanced Powder Technology, 2019, 30(5): 895-902. doi: 10.1016/j.apt.2019.02.003
|
| [26] |
LI H C, LAN Y F, ZHANG B L. Numerical simulation of solidification and heat-transferring process of continuous casting round billet[J]. Hot Working Technology, 2008, 37(9): 35-40.
|
| [27] |
HE W C, LÜ X W, PAN F F, et al. Preparation of iron powders using rotary cup atomizer with water curtain[J]. Powder Technology, 2020, 364: 300-309. doi: 10.1016/j.powtec.2020.01.046
|