Volume 46 Issue 4
Aug.  2025
Turn off MathJax
Article Contents
WEN Jiaxin, SHI Qi, ZHOU Ge, CHEN Lijia, LIU Xin, YIN Fuxing, LIANG Shenglong, WANG Xuelin, SHANG Chengjia. Study on the effects of high-frequency induction heated sintering and hot isostatic pressing sintering on microstructure and properties of powder metallurgy high-speed steel[J]. IRON STEEL VANADIUM TITANIUM, 2025, 46(4): 142-149. doi: 10.7513/j.issn.1004-7638.2025.04.019
Citation: WEN Jiaxin, SHI Qi, ZHOU Ge, CHEN Lijia, LIU Xin, YIN Fuxing, LIANG Shenglong, WANG Xuelin, SHANG Chengjia. Study on the effects of high-frequency induction heated sintering and hot isostatic pressing sintering on microstructure and properties of powder metallurgy high-speed steel[J]. IRON STEEL VANADIUM TITANIUM, 2025, 46(4): 142-149. doi: 10.7513/j.issn.1004-7638.2025.04.019

Study on the effects of high-frequency induction heated sintering and hot isostatic pressing sintering on microstructure and properties of powder metallurgy high-speed steel

doi: 10.7513/j.issn.1004-7638.2025.04.019
More Information
  • Received Date: 2024-09-14
    Available Online: 2025-08-31
  • Publish Date: 2025-08-31
  • The effects of high frequency induction heated sintering (HFIHS) and hot isostatic pressing (HIP) processes on the densification, microstructure and mechanical properties of prepared powder metallurgy high speed steel (PM-HSS) were studied. The results show that the HFIHS process can be used to prepare PM-HSS with a density of nearly 95% under short-time and low-pressure conditions, which is slightly lower than that prepared by HIP. In terms of microstructure, the PM-HSS produced by these two processes show significant differences: The sample prepared by HFIHS is composed of ferrite matrix and a large number of reticular carbides, while the other produced by HIP is composed of ferrite matrix and a large number of homogenously distributed strip carbides. Although the micro-hardness, yield strength, tensile strength and elongation of the high speed steel sintered by HFIHS process were lower than those of the HIPed sample, the performance is still similar. This finding indicates that the HFIHS process can be used to prepare PM-HSS products with excellent performance in a short time and at low cost, thus it is especially suitable for industrial fields with high requirements for cost and production cycle.
  • loading
  • [1]
    YU Y, XU S H, LIAO J. Progress on manufacture of powder metallurgy HSS/tool steels and development on their applications(Ⅰ)[J]. Powder Metallurgy Industry, 2024, 34(1): 1-10. (于洋, 徐圣航, 廖俊. 粉末冶金工模具钢的生产技术及应用研究进展(上)[J]. 粉末冶金工业, 2024, 34(1): 1-10.

    YU Y, XU S H, LIAO J. Progress on manufacture of powder metallurgy HSS/tool steels and development on their applications(Ⅰ)[J]. Powder Metallurgy Industry, 2024, 34(1): 1-10.
    [2]
    YU Y, XU S H, LIAO J. Progress on manufacture of powder metallurgy HSS/tool steels and development on their applications(Ⅱ)[J]. Powder Metallurgy Industry, 2024, 34(2): 1-10. (于洋, 徐圣航, 廖俊. 粉末冶金工模具钢的生产技术及应用研究进展(下)[J]. 粉末冶金工业, 2024, 34(2): 1-10.

    YU Y, XU S H, LIAO J. Progress on manufacture of powder metallurgy HSS/tool steels and development on their applications(Ⅱ)[J]. Powder Metallurgy Industry, 2024, 34(2): 1-10.
    [3]
    XU G L, HUANG P, SUN X, et al. Research status and development trend of high-speed-steel’s preparation and heat treatment process[J]. Materials China, 2020, 39(1): 70-77. (徐桂丽, 黄鹏, 孙溪, 等. 高速钢制备和热处理工艺的研究现状及发展趋势[J]. 中国材料进展, 2020, 39(1): 70-77. doi: 10.7502/j.issn.1674-3962.201811007

    XU G L, HUANG P, SUN X, et al. Research status and development trend of high-speed-steel’s preparation and heat treatment process[J]. Materials China, 2020, 39(1): 70-77. doi: 10.7502/j.issn.1674-3962.201811007
    [4]
    WU L Z. Developments and challenges of China high-speed steel industry over last decade[M]// Advanced Steels. Berlin, Heidelberg: Springer, 2011.
    [5]
    WANG J J. Brief introduction to the present situation of atomization powder technology in China[J]. Powder Metallurgy Industry, 2016, 26(5): 1-4. (王建军. 中国雾化制粉技术现状简介[J]. 粉末冶金工业, 2016, 26(5): 1-4.

    WANG J J. Brief introduction to the present situation of atomization powder technology in China[J]. Powder Metallurgy Industry, 2016, 26(5): 1-4.
    [6]
    DOBRZAŃSKI L A, MATULA G, VÁREZ A, et al. Fabrication methods and heat treatment conditions effect on tribological properties of high speed steels[J]. Journal of Materials Processing Technology, 2004, 157: 324-330.
    [7]
    OUYANG Q, YU Y L, HUANG Y P, et al. Properties of the PM M3∶2 high speed steel in different sintering atmospheres[J]. Powder Metallurgy Technology, 2016, 34(5): 351-355. (欧阳齐, 于永亮, 黄雍平, 等. 不同烧结气氛下M3∶2粉末高速钢的性能研究[J]. 粉末冶金技术, 2016, 34(5): 351-355. doi: 10.3969/j.issn.1001-3784.2016.05.006

    OUYANG Q, YU Y L, HUANG Y P, et al. Properties of the PM M3∶2 high speed steel in different sintering atmospheres[J]. Powder Metallurgy Technology, 2016, 34(5): 351-355. doi: 10.3969/j.issn.1001-3784.2016.05.006
    [8]
    GIMENEZ S, ZUBIZARRETA C, TRABADELO V, et al. Sintering behaviour and microstructure development of T42 powder metallurgy high speed steel under different processing conditions[J]. Materials Science and Engineering: A, 2008, 480(1-2): 130-137.
    [9]
    QIU Y, LIN Y J, ZHANG Q Y, et al. Study on tool steels with ultrahigh carbon and ultrahigh chromium prepared by vacuum hot-pressing[J]. Powder Metallurgy Technology, 2021, 39(4): 297-303. (邱悦, 林耀军, 张覃轶, 等. 真空热压超高碳超高铬模具钢研究[J]. 粉末冶金技术, 2021, 39(4): 297-303.

    QIU Y, LIN Y J, ZHANG Q Y, et al. Study on tool steels with ultrahigh carbon and ultrahigh chromium prepared by vacuum hot-pressing[J]. Powder Metallurgy Technology, 2021, 39(4): 297-303.
    [10]
    KIM H C, OH D Y, JIANG G J, et al. Synthesis of WC and dense WC-5 vol.% Co hard materials by high-frequency induction heated combustion[J]. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 2004, 368(1-2): 10-17. doi: 10.1016/j.msea.2003.08.105
    [11]
    KIM B R, WOO K D, DOH J M, et al. Mechanical properties and rapid consolidation of binderless nanostructured tantalum carbide[J]. Ceramics International, 2009, 35(8): 3395-3400. doi: 10.1016/j.ceramint.2009.06.012
    [12]
    KIM H C, KIM D K, WOO K D, et al. Consolidation of binderless WC-TiC by high frequency induction heating sintering[J]. International Journal of Refractory Metals & Hard Materials, 2008, 26(1): 48-54.
    [13]
    KIM H C, SHON I J, JEONG I K, et al. Rapid sintering of ultra fine WC and WC-Co hard materials by high-frequency induction heated sintering and their mechanical properties[J]. Metals and Materials International, 2007, 13(1): 39-45. doi: 10.1007/BF03027821
    [14]
    KIM H C, SHON I J , YOON J K, et al. One step synthesis and densification of ultra-fine WC by high-frequency induction combustion [J]. International Journal of Refractory Metals & Hard Materials, 2006, 24(3): 202-209.
    [15]
    KIM H C, YOON J K, DOH J M, et al. Rapid sintering process and mechanical properties of binderless ultra fine tungsten carbide[J]. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 2006, 435: 717-724.
    [16]
    KIM H C, SHON I J, YOON J K, et al. Rapid sintering of ultrafine WC-Ni cermets[J]. International Journal of Refractory Metals & Hard Materials, 2006, 24(6): 427-431.
    [17]
    KIM H C, SHON I J, MUNIR Z A. Rapid sintering of ultra-fine WC-10% Co by high-frequency induction heating[J]. Journal of Materials Science, 2005, 40(11): 2849-2854. doi: 10.1007/s10853-005-2422-9
    [18]
    KIM H C, OH D Y, SHON I J. Sintering of nanophase WC–15vol.% Co hard metals by rapid sintering process[J]. International Journal of Refractory Metals and Hard Materials, 2004, 22(4-5): 197-203. doi: 10.1016/j.ijrmhm.2004.06.006
    [19]
    CAO R, SHEN Y, ZHOU Z Z, et al. Effect of different cooling rates on microstructure and hardness of M390 powder metallurgy high-speed steel[J]. Transactions of Metal Heat Treatment, 2022, 43(4): 116-123. (曹睿, 沈漪, 周珍珍, 等. 不同冷却速度对M390粉末冶金高速钢组织与硬度的影响[J]. 材料热处理学报, 2022, 43(4): 116-123.

    CAO R, SHEN Y, ZHOU Z Z, et al. Effect of different cooling rates on microstructure and hardness of M390 powder metallurgy high-speed steel[J]. Transactions of Metal Heat Treatment, 2022, 43(4): 116-123.
    [20]
    HU Y, NIU Z G, LI K J, et al. Composition optimization and heat treatment study of carbide strengthened novel invar alloys[J]. Materials Research and Applications, 2024, 18(2): 292-298. (胡瑜, 牛振国, 栗克建, 等. 碳化物增强新型因瓦合金的成分优化及热处理工艺研究[J]. 材料研究与应用, 2024, 18(2): 292-298.

    HU Y, NIU Z G, LI K J, et al. Composition optimization and heat treatment study of carbide strengthened novel invar alloys[J]. Materials Research and Applications, 2024, 18(2): 292-298.
    [21]
    YANG Y, YANG H K, HE Q, et al. The effect of aging treatment on the mechanical and impact properties of solid soluted Fe-Mn-Al-C lightweight high manganese steel[J]. Materials Research and Applications, 2023, 17(2): 303-309. (杨壹, 杨浩坤, 何强, 等. 时效热处理对Fe-Mn-Al-C轻质高锰钢拉伸和冲击性能的影响[J]. 材料研究与应用, 2023, 17(2): 303-309.

    YANG Y, YANG H K, HE Q, et al. The effect of aging treatment on the mechanical and impact properties of solid soluted Fe-Mn-Al-C lightweight high manganese steel[J]. Materials Research and Applications, 2023, 17(2): 303-309.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(1)

    Article Metrics

    Article views (79) PDF downloads(5) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return