| Citation: | TANG Pingmei, JIANG Shichuan, XIA Changlin, ZHOU Yang, WANG Rui, LIU ying. Numerical simulation of vacuum arc remelting process of nickel base superalloy[J]. IRON STEEL VANADIUM TITANIUM, 2025, 46(4): 150-159. doi: 10.7513/j.issn.1004-7638.2025.04.020 |
| [1] |
GUO J T. Materials science and engineering for superalloy (Superalloy materials and engineering applications)[M]. Beijing: Science Press, 2010. (郭建亭. 高温合金材料学(高温合金材料与工程应用) [M]. 北京: 科学出版社, 2010.
GUO J T. Materials science and engineering for superalloy (Superalloy materials and engineering applications)[M]. Beijing: Science Press, 2010.
|
| [2] |
GENG L, NA Y S, PARK N K. Oxidation behavior of alloy 718 at a high temperature[J]. Materials & Design, 2007, 28(3): 978-981.
|
| [3] |
JIANG S C, ZHANG J, HE Y H, et al. Microstructure evolution and processing maps of GH4169 during deformation[J]. Iron Steel Vanadium Titanium, 2021, 42(2): 161-166. (蒋世川, 张健, 何云华, 等. GH4169 合金高温变形显微组织演变及热加工图[J]. 钢铁钒钛, 2021, 42(2): 161-166.
JIANG S C, ZHANG J, HE Y H, et al. Microstructure evolution and processing maps of GH4169 during deformation[J]. Iron Steel Vanadium Titanium, 2021, 42(2): 161-166.
|
| [4] |
ZHONG Z Y, ZHUANG J Y. Development of several important problems on producing technologies of wrought superalloy[J]. Journal of Iron and Steel Research, 2003(z1): 9. (仲增墉, 庄景云. 变形高温合金生产工艺中几个重要问题的研究和进展[J]. 钢铁研究学报, 2003(z1): 9. doi: 10.3321/j.issn:1001-0963.2003.z1.001
ZHONG Z Y, ZHUANG J Y. Development of several important problems on producing technologies of wrought superalloy[J]. Journal of Iron and Steel Research, 2003(z1): 9. doi: 10.3321/j.issn:1001-0963.2003.z1.001
|
| [5] |
WANG Z X. Microstrcture and property controlling of IN718 alloy bar by triple melting [D]. Shenyang: Northeastern University, 2019. (王资兴. 三联冶炼工艺制备IN718合金棒材组织与性能控制[D]. 沈阳: 东北大学, 2019.
WANG Z X. Microstrcture and property controlling of IN718 alloy bar by triple melting [D]. Shenyang: Northeastern University, 2019.
|
| [6] |
SANKAR M, PRASAD V V S, BALIGIDAD R G, et al. Effect of vacuum arc remelting and processing parameters on structure and properties of high purity niobium[J]. International Journal of Refractory Metals and Hard Materials, 2015, 50: 120-125. doi: 10.1016/j.ijrmhm.2014.12.001
|
| [7] |
NING J, WANG A , BI Z X, et al. Optimization of vacuum arc remelting process for M54 ultra-high strength steel based on simulation[J] Special Steel, 2023, 44(5): 60-68. (宁静, 王敖, 毕正绪, 等. 基于仿真的M54超高强度钢真空自耗重熔工艺优化[J]. 特殊钢, 2023, 44(5): 60-68.
NING J, WANG A , BI Z X, et al. Optimization of vacuum arc remelting process for M54 ultra-high strength steel based on simulation[J] Special Steel, 2023, 44(5): 60-68.
|
| [8] |
DAI P. Effects of different helium cooling conditions on the structures of GH4169 alloy vacuum arc remelting ingots[J]. Baosteel Technical Research, 2020, 14(4): 40-46.
|
| [9] |
HUANG Z. Study on solidification segregation and homogenization of C700R1-1 nickle-base heat resistant alloy[D]. Beijing: University of Science and Technology Beijing, 2023. (黄震. C700R-1镍基耐热合金凝固偏析与均匀化研究[D]. 北京: 北京科技大学, 2023.
HUANG Z. Study on solidification segregation and homogenization of C700R1-1 nickle-base heat resistant alloy[D]. Beijing: University of Science and Technology Beijing, 2023.
|
| [10] |
WANG X, WARD R M, JACBS M H, et al. Effect of variation in process parameters on the formation of freckle in inconel 718 by vacuum arc remelting[J]. Metallurgical and Materials Transactions A, 2008, 39: 2981-2989. doi: 10.1007/s11661-008-9638-7
|
| [11] |
QU J L, YANG S F, CHEN Z Y, et al. Research progress in numerical simulation of vacuum arc remelting process[J]. China Metallurgy, 2020, 30(1): 1-9. (曲敬龙, 杨树峰, 陈正阳, 等. 真空自耗冶炼过程数值仿真研究进展[J]. 中国冶金, 2020, 30(1): 1-9.
QU J L, YANG S F, CHEN Z Y, et al. Research progress in numerical simulation of vacuum arc remelting process[J]. China Metallurgy, 2020, 30(1): 1-9.
|
| [12] |
WANG Y D, ZHANG L F, ZHANG J, et al. Numerical simulation of macrosegregation in vacuum arc remelting process[J]. Journal of Iron and Steel Research, 2021, 33(8): 718-725. (王亚栋, 张立峰, 张健, 等. 真空自耗熔炼过程宏观偏析的数值模拟[J]. 钢铁研究学报, 2021, 33(8): 718-725.
WANG Y D, ZHANG L F, ZHANG J, et al. Numerical simulation of macrosegregation in vacuum arc remelting process[J]. Journal of Iron and Steel Research, 2021, 33(8): 718-725.
|
| [13] |
BERTRAM L A, ADSCZIK C B, EVANS D G, et al. Quantitative simulations of a superalloy VAR ingot at the macroscale[C]//Proceedings of the 1997 International Symposium on Liquid Metal Processing and Casting, A. Mitchell and P. Auburtin, eds., (Am. Vac. Soc. , 1997). 1997: 110-132.
|
| [14] |
HOSAMANI L G, Experimental and theoretical heat transfer studies in vacuum arc remelting[D]. Portland: Oregon Health & Science University, 1988.
|
| [15] |
YUAN L, DJAMBAZOV G, LEE P D, et al. Multiscale modeling of the vacuum arc remelting process for the prediction on microstructure formation[J]. International Journal of Modern Physics B, 2009, 23(06n07): 1584-1590. doi: 10.1142/S0217979209061305
|
| [16] |
BÖTTGER B, SCHMITZ G J, WAHLERS F J, et al. New freckle criterion for technical remelting processes[J]. High Temperatures-High Pressures, 2013, 42(2): 115-136.
|
| [17] |
MOTLEY J, KELKAR K. Masurement of the spatio-temporal distribution of arcs during vacuum arc remelting and their implications on VAR solicitation defects[C]. Proceedings of the Liquid Metals Processing & Casting Conference. 2019.
|