| Citation: | ZHANG Silong, YANG Lilin, ZHANG Wenduan, ZHAO Liping. Effect of Ti on the solidification structure and thermal deformation properties of 304B7[J]. IRON STEEL VANADIUM TITANIUM, 2025, 46(4): 160-165. doi: 10.7513/j.issn.1004-7638.2025.04.021 |
| [1] |
LU W Y, WANG D B, JI B T, et al. Insight into the long-term corrosion evolution of borated stainless steels in the wet storage environment for spent nuclear fuel[J]. Corrosion Science, 2024, 237(1): 112348.
|
| [2] |
A- A C. Standard specification for borated stainless steel plate, sheet, and strip for nuclear application[S]. Annual Book of ASTM Standards, 2000.
|
| [3] |
YU G. Boron-containing stainless steel for thermal neutron shielding[J]. Journal of Iron and Steel Research, 1989(1): 90.
|
| [4] |
TSUBOTA M, OIKAWA M. Boron-bearing stainless steel for thermal neutron shielding[J]. Bulletin of the Iron and Steel Institute of Japan, 2005, 12(10): 25-32.
|
| [5] |
LI Y W, HE X Y, WANG X M, et al. Study on thermal deformation behavior and mechanism of difficult-to-process boron-containing stainless steel[J]. Nuclear Power Engineering, 2022, 43(S2): 67-73. (李永旺, 何雪溢, 王馨敏, 等. 难加工含硼不锈钢热变形行为与机制研究[J]. 核动力工程, 2022, 43(S2): 67-73.
LI Y W, HE X Y, WANG X M, et al. Study on thermal deformation behavior and mechanism of difficult-to-process boron-containing stainless steel[J]. Nuclear Power Engineering, 2022, 43(S2): 67-73.
|
| [6] |
FU H G, XIAO Q, KUANG J C, et al. Effect of rare earth and titanium additions on the microstructures and properties of low carbon Fe-B cast steel. Materials Science and Engineering: A , 2007, 466: 160-165.
|
| [7] |
JIANG J. The Effect of Ti on the microstructure of high boron steel[D]. Chengdu: Xihua University, 2009. (蒋军. Ti对高硼钢微观组织结构的影响[D]. 成都: 西华大学, 2009.
JIANG J. The Effect of Ti on the microstructure of high boron steel[D]. Chengdu: Xihua University, 2009.
|
| [8] |
HE L, LIU Y, LI J, et al. Effects of hot rolling and titanium content on the microstructure and mechanical properties of high boron Fe-B alloys[J]. Materials and Design, 2012, 36: 88-93. doi: 10.1016/j.matdes.2011.10.043
|
| [9] |
LIU Y, LI B H, LI J, et al. Effect of titanium on the ductilization of Fe-B alloys with high boron content[J]. Materials and Design, 2010, 64: 1299-1301.
|
| [10] |
ER Q L. Research on spent fuel storage materials (boron containing stainless steel)[D]. Kunming: Kunming University of Science and Technology, 2013. (佴启亮. 乏燃料贮存材料(含硼不锈钢)的研究[D]. 昆明: 昆明理工大学, 2013.
ER Q L. Research on spent fuel storage materials (boron containing stainless steel)[D]. Kunming: Kunming University of Science and Technology, 2013.
|
| [11] |
HUANG X M. Study on high boron steel for thermal neutron shielding based on strip casting[D]. Shenyang: Northeastern University, 2017. (黄晓明. 基于薄带连铸技术制备热中子屏蔽用高硼钢的研究[D]. 沈阳: 东北大学, 2017.
HUANG X M. Study on high boron steel for thermal neutron shielding based on strip casting[D]. Shenyang: Northeastern University, 2017.
|
| [12] |
YANG H, LIU Y, LI J, et al. Thermodynamic analysis on precipitation behavior of titanium-containing precipitated phases of titanium-alloyed high boron steel[J]. Iron Steel Vanadium Titanium, 2014, 35(1): 41-47. (杨浩, 刘颖, 李军, 等. 钛对高硼钢凝固组织及析出相的热力学分析[J]. 钢铁钒钛, 2014, 35(1): 41-47. doi: 10.7513/j.issn.1004-7638.2014.01.009
YANG H, LIU Y, LI J, et al. Thermodynamic analysis on precipitation behavior of titanium-containing precipitated phases of titanium-alloyed high boron steel[J]. Iron Steel Vanadium Titanium, 2014, 35(1): 41-47. doi: 10.7513/j.issn.1004-7638.2014.01.009
|
| [13] |
YUAN L L. Research on preparative technique of metal composite contained boron for nuclear shielding[D]. Beijing: University of Science and Technology Beijing, 2016. (元琳琳. 核屏蔽用高硼金属复合材料的制备技术基础研究[D]. 北京: 北京科技大学, 2016.
YUAN L L. Research on preparative technique of metal composite contained boron for nuclear shielding[D]. Beijing: University of Science and Technology Beijing, 2016.
|
| [14] |
YONG Q L. Second phases in structural steels[M]. Beijing: Metallurgical Industry Press, 2006: 20-24. (雍岐龙. 钢铁材料中的第二相[M]. 北京: 冶金工业出版社, 2006: 20-24.
YONG Q L. Second phases in structural steels[M]. Beijing: Metallurgical Industry Press, 2006: 20-24.
|
| [15] |
ZHANG Y Y, WANG H, YANG P, et al. Analysis for processing map of Fe-13Cr-4Al alloy[J]. Iron Steel Vanadium Titanium, 2019, 40(4): 152-157, 163. (张毅勇, 王辉, 杨攀, 等. Fe-13Cr-4Al合金的热加工图分析[J]. 钢铁钒钛, 2019, 40(4): 152-157, 163. doi: 10.7513/j.issn.1004-7638.2019.04.028
ZHANG Y Y, WANG H, YANG P, et al. Analysis for processing map of Fe-13Cr-4Al alloy[J]. Iron Steel Vanadium Titanium, 2019, 40(4): 152-157, 163. doi: 10.7513/j.issn.1004-7638.2019.04.028
|
| [16] |
YE M Y, LI J C, QUAN W, et al. Hot compression constitutive equation and hot processing map of 06Cr23Ni13 stainless steel[J]. Transactions of Materials and Heat Treatment, 2024, 45(1): 193-199, 208. (叶梦元, 李俊琛, 权伟, 等. 06Cr23Ni13不锈钢的热压缩本构方程及热加工图[J]. 材料热处理学报, 2024, 45(1): 193-199, 208.
YE M Y, LI J C, QUAN W, et al. Hot compression constitutive equation and hot processing map of 06Cr23Ni13 stainless steel[J]. Transactions of Materials and Heat Treatment, 2024, 45(1): 193-199, 208.
|