Volume 46 Issue 4
Aug.  2025
Turn off MathJax
Article Contents
ZHANG Silong, YANG Lilin, ZHANG Wenduan, ZHAO Liping. Effect of Ti on the solidification structure and thermal deformation properties of 304B7[J]. IRON STEEL VANADIUM TITANIUM, 2025, 46(4): 160-165. doi: 10.7513/j.issn.1004-7638.2025.04.021
Citation: ZHANG Silong, YANG Lilin, ZHANG Wenduan, ZHAO Liping. Effect of Ti on the solidification structure and thermal deformation properties of 304B7[J]. IRON STEEL VANADIUM TITANIUM, 2025, 46(4): 160-165. doi: 10.7513/j.issn.1004-7638.2025.04.021

Effect of Ti on the solidification structure and thermal deformation properties of 304B7

doi: 10.7513/j.issn.1004-7638.2025.04.021
More Information
  • Received Date: 2025-01-01
    Available Online: 2025-08-31
  • Publish Date: 2025-08-31
  • The 304B7 stainless steel was taken as the research object, and different contents of Ti element were added to cast the test steels. The hot compression test was conducted on the test steel using a thermal simulator to simulate the hot rolling process. Optical microscope, X-ray diffractometer, scanning electron microscope, and electron probe were used to analyze the phase composition and microstructure of the as cast and hot compressed test steel. The results indicate that there are a large number of continuous network-like eutectic borides in the as cast test steel. With the addition of Ti, some borides transform from elongated (Fe,Cr)2B to granular TiB2. After hot compression, the austenite grains of the test steel are elongated along the compression direction, and the borides are broken from long strips into short rod-shaped shapes. The higher the hot compression temperature, the lower the deformation resistance of the test steel. The peak flow stress of the test steel containing 0.5% Ti is the relatively smallest during hot compression, indicating better hot workability.
  • loading
  • [1]
    LU W Y, WANG D B, JI B T, et al. Insight into the long-term corrosion evolution of borated stainless steels in the wet storage environment for spent nuclear fuel[J]. Corrosion Science, 2024, 237(1): 112348.
    [2]
    A- A C. Standard specification for borated stainless steel plate, sheet, and strip for nuclear application[S]. Annual Book of ASTM Standards, 2000.
    [3]
    YU G. Boron-containing stainless steel for thermal neutron shielding[J]. Journal of Iron and Steel Research, 1989(1): 90.
    [4]
    TSUBOTA M, OIKAWA M. Boron-bearing stainless steel for thermal neutron shielding[J]. Bulletin of the Iron and Steel Institute of Japan, 2005, 12(10): 25-32.
    [5]
    LI Y W, HE X Y, WANG X M, et al. Study on thermal deformation behavior and mechanism of difficult-to-process boron-containing stainless steel[J]. Nuclear Power Engineering, 2022, 43(S2): 67-73. (李永旺, 何雪溢, 王馨敏, 等. 难加工含硼不锈钢热变形行为与机制研究[J]. 核动力工程, 2022, 43(S2): 67-73.

    LI Y W, HE X Y, WANG X M, et al. Study on thermal deformation behavior and mechanism of difficult-to-process boron-containing stainless steel[J]. Nuclear Power Engineering, 2022, 43(S2): 67-73.
    [6]
    FU H G, XIAO Q, KUANG J C, et al. Effect of rare earth and titanium additions on the microstructures and properties of low carbon Fe-B cast steel. Materials Science and Engineering: A , 2007, 466: 160-165.
    [7]
    JIANG J. The Effect of Ti on the microstructure of high boron steel[D]. Chengdu: Xihua University, 2009. (蒋军. Ti对高硼钢微观组织结构的影响[D]. 成都: 西华大学, 2009.

    JIANG J. The Effect of Ti on the microstructure of high boron steel[D]. Chengdu: Xihua University, 2009.
    [8]
    HE L, LIU Y, LI J, et al. Effects of hot rolling and titanium content on the microstructure and mechanical properties of high boron Fe-B alloys[J]. Materials and Design, 2012, 36: 88-93. doi: 10.1016/j.matdes.2011.10.043
    [9]
    LIU Y, LI B H, LI J, et al. Effect of titanium on the ductilization of Fe-B alloys with high boron content[J]. Materials and Design, 2010, 64: 1299-1301.
    [10]
    ER Q L. Research on spent fuel storage materials (boron containing stainless steel)[D]. Kunming: Kunming University of Science and Technology, 2013. (佴启亮. 乏燃料贮存材料(含硼不锈钢)的研究[D]. 昆明: 昆明理工大学, 2013.

    ER Q L. Research on spent fuel storage materials (boron containing stainless steel)[D]. Kunming: Kunming University of Science and Technology, 2013.
    [11]
    HUANG X M. Study on high boron steel for thermal neutron shielding based on strip casting[D]. Shenyang: Northeastern University, 2017. (黄晓明. 基于薄带连铸技术制备热中子屏蔽用高硼钢的研究[D]. 沈阳: 东北大学, 2017.

    HUANG X M. Study on high boron steel for thermal neutron shielding based on strip casting[D]. Shenyang: Northeastern University, 2017.
    [12]
    YANG H, LIU Y, LI J, et al. Thermodynamic analysis on precipitation behavior of titanium-containing precipitated phases of titanium-alloyed high boron steel[J]. Iron Steel Vanadium Titanium, 2014, 35(1): 41-47. (杨浩, 刘颖, 李军, 等. 钛对高硼钢凝固组织及析出相的热力学分析[J]. 钢铁钒钛, 2014, 35(1): 41-47. doi: 10.7513/j.issn.1004-7638.2014.01.009

    YANG H, LIU Y, LI J, et al. Thermodynamic analysis on precipitation behavior of titanium-containing precipitated phases of titanium-alloyed high boron steel[J]. Iron Steel Vanadium Titanium, 2014, 35(1): 41-47. doi: 10.7513/j.issn.1004-7638.2014.01.009
    [13]
    YUAN L L. Research on preparative technique of metal composite contained boron for nuclear shielding[D]. Beijing: University of Science and Technology Beijing, 2016. (元琳琳. 核屏蔽用高硼金属复合材料的制备技术基础研究[D]. 北京: 北京科技大学, 2016.

    YUAN L L. Research on preparative technique of metal composite contained boron for nuclear shielding[D]. Beijing: University of Science and Technology Beijing, 2016.
    [14]
    YONG Q L. Second phases in structural steels[M]. Beijing: Metallurgical Industry Press, 2006: 20-24. (雍岐龙. 钢铁材料中的第二相[M]. 北京: 冶金工业出版社, 2006: 20-24.

    YONG Q L. Second phases in structural steels[M]. Beijing: Metallurgical Industry Press, 2006: 20-24.
    [15]
    ZHANG Y Y, WANG H, YANG P, et al. Analysis for processing map of Fe-13Cr-4Al alloy[J]. Iron Steel Vanadium Titanium, 2019, 40(4): 152-157, 163. (张毅勇, 王辉, 杨攀, 等. Fe-13Cr-4Al合金的热加工图分析[J]. 钢铁钒钛, 2019, 40(4): 152-157, 163. doi: 10.7513/j.issn.1004-7638.2019.04.028

    ZHANG Y Y, WANG H, YANG P, et al. Analysis for processing map of Fe-13Cr-4Al alloy[J]. Iron Steel Vanadium Titanium, 2019, 40(4): 152-157, 163. doi: 10.7513/j.issn.1004-7638.2019.04.028
    [16]
    YE M Y, LI J C, QUAN W, et al. Hot compression constitutive equation and hot processing map of 06Cr23Ni13 stainless steel[J]. Transactions of Materials and Heat Treatment, 2024, 45(1): 193-199, 208. (叶梦元, 李俊琛, 权伟, 等. 06Cr23Ni13不锈钢的热压缩本构方程及热加工图[J]. 材料热处理学报, 2024, 45(1): 193-199, 208.

    YE M Y, LI J C, QUAN W, et al. Hot compression constitutive equation and hot processing map of 06Cr23Ni13 stainless steel[J]. Transactions of Materials and Heat Treatment, 2024, 45(1): 193-199, 208.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(1)

    Article Metrics

    Article views (65) PDF downloads(9) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return