| Citation: | REN Zhenyu, SONG Bo, XU Guofang, CHENG Wensen. Influence of niobium precipitates on the hydrogen-induced cracking resistance of X80 pipeline steel[J]. IRON STEEL VANADIUM TITANIUM, 2025, 46(4): 166-173. doi: 10.7513/j.issn.1004-7638.2025.04.022 |
| [1] |
GAO H L. Pipeline steel and pipeline steel pipe[M]. Beijing: China Petrochemical Press, 2012. (高惠临. 管线钢与管线钢管[M]. 北京: 中国石化出版社, 2012.
GAO H L. Pipeline steel and pipeline steel pipe[M]. Beijing: China Petrochemical Press, 2012.
|
| [2] |
FENG H, CHI Q, JI L K, et al. Research and development of hydrogen embrittlement of pipeline steel[J]. Corrosion Science and Protection Technology, 2017, 29(3): 318-322. (封辉, 池强, 吉玲康, 等. 管线钢氢脆研究现状及进展[J]. 腐蚀科学与防护技术, 2017, 29(3): 318-322. doi: 10.11903/1002.6495.2016.154
FENG H, CHI Q, JI L K, et al. Research and development of hydrogen embrittlement of pipeline steel[J]. Corrosion Science and Protection Technology, 2017, 29(3): 318-322. doi: 10.11903/1002.6495.2016.154
|
| [3] |
WANG X M, JIN P P, WANG A, et al. Research on corrosion and protection of petroleum and natural gas pipelines[J]. Liaoning Chemical Industry, 2023, 52(11): 1602-1605. (汪仙明, 靳培培, 王傲, 等. 石油天然气管道腐蚀与防护[J]. 辽宁化工, 2023, 52(11): 1602-1605.
WANG X M, JIN P P, WANG A, et al. Research on corrosion and protection of petroleum and natural gas pipelines[J]. Liaoning Chemical Industry, 2023, 52(11): 1602-1605.
|
| [4] |
FAN Y W, WU M, CHEN X, et al. Research progress of hydrogen induced cracking for pipeline steel[J]. Thermal Working Technology, 2017, 46(4): 48-53. (范裕文, 吴明, 陈旭, 等. 管线钢氢致开裂研究现状[J]. 热加工工艺, 2017, 46(4): 48-53.
FAN Y W, WU M, CHEN X, et al. Research progress of hydrogen induced cracking for pipeline steel[J]. Thermal Working Technology, 2017, 46(4): 48-53.
|
| [5] |
CHENG Y F, SUN Y H, ZHANG Y D. Development of hydrogen pipelines and hydrogen embrittlement challenges of pipeline steel[J]. Journal of Yangtze University, 2022, 19(1): 54-69. (程玉峰, 孙颖昊, 张引弟. 氢气管道发展与管线钢氢脆挑战[J]. 长江大学学报, 2022, 19(1): 54-69.
CHENG Y F, SUN Y H, ZHANG Y D. Development of hydrogen pipelines and hydrogen embrittlement challenges of pipeline steel[J]. Journal of Yangtze University, 2022, 19(1): 54-69.
|
| [6] |
LI T Y, CHEN Y M, MA G Q, et al. Effect of microalloying by adding Nb and V on phase precipitation behaviors and strengths of high strength pipeline steels[J]. Angang Technology, 2023(6): 64-70, 83. (李天怡, 陈义冕, 马国强, 等. Nb、V微合金化对高强管线钢相析出及强度的影响[J]. 鞍钢技术, 2023(6): 64-70, 83. doi: 10.3969/j.issn.1006-4613.2023.06.0011
LI T Y, CHEN Y M, MA G Q, et al. Effect of microalloying by adding Nb and V on phase precipitation behaviors and strengths of high strength pipeline steels[J]. Angang Technology, 2023(6): 64-70, 83. doi: 10.3969/j.issn.1006-4613.2023.06.0011
|
| [7] |
DU J W, MING H L, WANG J Q. Research status and progress of hydrogen embrittlement of hydrogen pi[elines[J]. Oil& Gas Storage and Transportation, 2023, 42(10): 1107-1117. (杜建伟, 明洪亮, 王俭秋. 输氢管道氢脆研究现状及进展[J]. 油气储运, 2023, 42(10): 1107-1117.
DU J W, MING H L, WANG J Q. Research status and progress of hydrogen embrittlement of hydrogen pi[elines[J]. Oil& Gas Storage and Transportation, 2023, 42(10): 1107-1117.
|
| [8] |
DEPOVER T, VERBEKEN K. The effect of TiC on the hydrogen induced ductility loss and trapping behavior of Fe-C-Ti alloys[J]. Corrosion Science, 2016, 112: 308-326. doi: 10.1016/j.corsci.2016.07.013
|
| [9] |
LI L F, SONG B, CHENG J, et al. Effects of vanadium precipitates on hydrogen trapping efficiency and hydrogen induced cracking resistance in X80 pipeline steel[J]. International Journal of Hydrogen Energy, 2018, 43(36): 17353-17363. doi: 10.1016/j.ijhydene.2018.07.110
|
| [10] |
WAN R C, YU M. Effects of Nb on austenite dynamic recovery and dynamic recrystallization of low-carbon steels[J]. Thermal Working Technology, 2015, 44(2): 115-117, 20. (万荣春, 于淼. 铌对低碳钢奥氏体的变形及动态回复再结晶的影响[J]. 热加工工艺, 2015, 44(2): 115-117, 20.
WAN R C, YU M. Effects of Nb on austenite dynamic recovery and dynamic recrystallization of low-carbon steels[J]. Thermal Working Technology, 2015, 44(2): 115-117, 20.
|
| [11] |
ZHANG S Q, WAN J F, ZHAO Q Y, et al. Dual role of nanosized NbC precipitates in hydrogen embrittlement susceptibility of lath martensitic steel[J]. Corrosion Science, 2020, 164: 108345. doi: 10.1016/j.corsci.2019.108345
|
| [12] |
FAN Y Q, MA C W, LI S P, et al. Effect of Nb on the hydrogen-induced cracking of X80 pipeline steel[J]. Journal of Physics: Conference Series, 2023, 2566(1): 012082. doi: 10.1088/1742-6596/2566/1/012082
|
| [13] |
WANG H. Research on the effects of dispersion precipitates on hydrogen behavior in structural steels[D]. Wuhan: Huazhong University of Science and Technology, 2023. (王恒. 弥散析出相对结构钢中氢行为影响机制的研究[D]. 武汉: 华中科技大学, 2023.
WANG H. Research on the effects of dispersion precipitates on hydrogen behavior in structural steels[D]. Wuhan: Huazhong University of Science and Technology, 2023.
|
| [14] |
MA Y, SHI Y F, WANG H Y, et al. A first-principles study on the hydrogen trap characteristics of coherent nano-precipitates in α-Fe[J]. International Journal of Hydrogen Energy, 2020, 45(51): 27941-27949. doi: 10.1016/j.ijhydene.2020.07.123
|
| [15] |
GUO A M, MA M T, XU Z, et al. EVI with embrittlement[M]. Beijing: Beijing Institute of Technology Press, 2023. (郭爱民, 马鸣图, 徐佐, 等. EVI与氢脆[M]. 北京: 北京理工大学出版社, 2023.
GUO A M, MA M T, XU Z, et al. EVI with embrittlement[M]. Beijing: Beijing Institute of Technology Press, 2023.
|
| [16] |
RAMIREZ M F G, HERNÁNDEZ J W C, LADINO D H, et al. Effects of different cooling rates on the microstructure, crystallographic features, and hydrogen induced cracking of API X80 pipeline steel[J]. Journal of Materials Research and Technology, 2021, 14: 1848-1861. doi: 10.1016/j.jmrt.2021.07.060
|
| [17] |
GOU J X, XING X, CUI G, et al. Hydrogen-induced cracking in CGHAZ of welded X80 steel under tension load[J]. 2023, 13(7): 1307-1325.
|
| [18] |
MOHTADI-BONAB M A, SZPUNAR J A, RAZAVI-TOUSI S S. Hydrogen induced cracking susceptibility in different layers of a hot rolled X70 pipeline steel[J]. International Journal of Hydrogen Energy, 2013, 38(31): 13831-13841. doi: 10.1016/j.ijhydene.2013.08.046
|
| [19] |
XIE D G, WAN L, SHAN Z W. Hydrogen enhanced cracking via dynamic formation of grain boundary inside aluminium crystal[J]. Corrosion Science, 2021, 183: 109307. doi: 10.1016/j.corsci.2021.109307
|