| Citation: | HUANG Jian, XU Haijian, PANG Zongxu, ZHANG Jianping, WANG Yong, LI Tianyi. The influence of second-phase particles on austenite grain growth behavior in Nb-Ti microalloyed steel[J]. IRON STEEL VANADIUM TITANIUM, 2025, 46(4): 174-181. doi: 10.7513/j.issn.1004-7638.2025.04.023 |
| [1] |
FERNANDEZ J, ILLESCAS S, GUILEMANY J M. Effect of microalloying elements on the austenitic grain growth in a low carbon HSLA steel[J]. Materials Letters, 2007, 61(11/12): 2389-2392.
|
| [2] |
ZHANG Z W. Research progress on high-strength low-alloy steel (HSLA)[J]. Materials China, 2016, 35(2): 141-151. (张中武. 高强度低合金钢(HSLA)的研究进展[J]. 中国材料进展, 2016, 35(2): 141-151.
ZHANG Z W. Research progress on high-strength low-alloy steel (HSLA)[J]. Materials China, 2016, 35(2): 141-151.
|
| [3] |
MAALEKIAN M, RADIS R, MILITZER M, et al. In situ measurement and modelling of austenite grain growth in a Ti/Nb microalloyed steel[J]. Acta Materialia, 2012, 60(3): 1015-1026. doi: 10.1016/j.actamat.2011.11.016
|
| [4] |
LIU X, DU Q L, LI X. Effect of heating process on austenitic grain growth of Nb-Ti microalloys steel[J]. Iron & Steel, 2019, 54(9): 116-120. (刘祥, 杜群力, 李新. 加热工艺对Nb-Ti微合金钢奥氏体晶粒长大的影响[J]. 钢铁, 2019, 54(9): 116-120.
LIU X, DU Q L, LI X. Effect of heating process on austenitic grain growth of Nb-Ti microalloys steel[J]. Iron & Steel, 2019, 54(9): 116-120.
|
| [5] |
YU S, TAO Z, DU L X. Study on the kinetics of austenite grain growth in medium manganese steel[J]. Hot Working Technology, 2020, 49(6): 121-123. (于帅, 陶振, 杜林秀. 中锰钢的奥氏体晶粒长大动力学研究[J]. 热加工工艺, 2020, 49(6): 121-123.
YU S, TAO Z, DU L X. Study on the kinetics of austenite grain growth in medium manganese steel[J]. Hot Working Technology, 2020, 49(6): 121-123.
|
| [6] |
XUE L, ZHANG L W, DING H C, et al. Comparison of austenite grain growth behavior between 20CrMnTi steel and 20 steel[J]. Heat Treatment of Metals, 2023, 48(10): 45-49. (薛莉, 张立文, 丁浩晨, 等. 20CrMnTi钢和20钢奥氏体晶粒长大行为对比[J]. 金属热处理, 2023, 48(10): 45-49.
XUE L, ZHANG L W, DING H C, et al. Comparison of austenite grain growth behavior between 20CrMnTi steel and 20 steel[J]. Heat Treatment of Metals, 2023, 48(10): 45-49.
|
| [7] |
DING Z M, FANG J F, LIANG B, et al. Dynamics of austenite grain growth in V-Nb-(Ti) microalloyed steel[J]. Transactions of Materials and Heat Treatment, 2013, 34(S1): 88-92. (丁志敏, 方建飞, 梁博, 等. V-Nb-(Ti)微合金化钢奥氏体晶粒长大的动力学[J]. 材料热处理学报, 2013, 34(S1): 88-92.
DING Z M, FANG J F, LIANG B, et al. Dynamics of austenite grain growth in V-Nb-(Ti) microalloyed steel[J]. Transactions of Materials and Heat Treatment, 2013, 34(S1): 88-92.
|
| [8] |
LIANG W, WU R, HU J, et al. Effect of heating process on Nb-Ti microalloys in high strength steel[J]. Journal of Central South University(Science and Technology), 2019, 50(9): 2063-2073. (梁文, 吴润, 胡俊, 等. 加热工艺对Nb-Ti微合金化高强钢的影响[J]. 中南大学学报(自然科学版), 2019, 50(9): 2063-2073.
LIANG W, WU R, HU J, et al. Effect of heating process on Nb-Ti microalloys in high strength steel[J]. Journal of Central South University(Science and Technology), 2019, 50(9): 2063-2073.
|
| [9] |
HUI Y J, YU Y, WANG C, et al. Austenitic grain coarsening behavior of titanium microalloyed hot-rolled high-strength steel[J]. Transactions of Materials and Heat Treatment, 2014, 35(12): 140-145. (惠亚军, 于洋, 王畅, 等. 钛微合金化热轧高强钢奥氏体晶粒粗化行为[J]. 材料热处理学报, 2014, 35(12): 140-145.
HUI Y J, YU Y, WANG C, et al. Austenitic grain coarsening behavior of titanium microalloyed hot-rolled high-strength steel[J]. Transactions of Materials and Heat Treatment, 2014, 35(12): 140-145.
|
| [10] |
YANG X L. The effect of heating temperature on solid solution and grain growth of second phase particles in pipeline steel[J]. Iron Steel Vanadium Titanium, 2002, 23 (2): 11-15. (杨秀亮. 加热温度对管线钢第二相粒子固溶及晶粒长大的影响[J]. 钢铁钒钛, 2002, 23( 2) : 11-15.
YANG X L. The effect of heating temperature on solid solution and grain growth of second phase particles in pipeline steel[J]. Iron Steel Vanadium Titanium, 2002, 23 (2): 11-15.
|
| [11] |
RAZZAK MA, PEREZ M, SOURMAIL T. A simple model for abnormal grain growth[J]. ISIJ INTERNATIONAL, 2012, 52(12): 2278-2282. doi: 10.2355/isijinternational.52.2278
|
| [12] |
NES E, RYUM N, HUNDERI O. On the Zener drag[J]. Acta Metallurgica, 1985, 33(1): 11-22. doi: 10.1016/0001-6160(85)90214-7
|
| [13] |
GLADMAN T. On the theory of the effect of precipitate particles on grain growth in metals[J]. Proceedings of the Royal Society of London Series A: Mathematical and Physical Sciences, 1966, 294(1438): 298-309.
|
| [14] |
HUMPHREYS F J. A unified theory of recovery, recrystallization and grain growth, based on the stability and growth of cellular microstructures-Ⅱ. The effect of secondphaseparticles[J]. Acta Materialia, 1997, 45(12): 5031-5039. doi: 10.1016/S1359-6454(97)00173-0
|
| [15] |
JANA S, MISHRA R S, BAUMANN J A, et al. Effect of process parameters on abnormal grain growth during friction stir processing of a cast Al alloy[J]. Materials Science and Engineering A, 2010, 528(1): 189-199. doi: 10.1016/j.msea.2010.08.049
|
| [16] |
FERRY M, HAMILTON N E, HUMPHREYS F J. Continuous and discontinuous grain coarsening in a fine-grained particle-containing Al-Sc alloy[J]. Acta Materialia, 2005, 53(4): 1097-1109. doi: 10.1016/j.actamat.2004.11.006
|
| [17] |
CHEN K, GAAN W, OKMAOTO K, et al. The mechanism of grain coarsening in friction stir-welded AA5083 after heat treatment[J]. Metallurgical and Materials Transactions A, 2011, 42(2): 488-507. doi: 10.1007/s11661-010-0426-9
|
| [18] |
BECK P A, KREMER J C, DEMER L J, et al. Grain growth in high-purity aluminium and in an aluminum-magnesium alloy[J]. Trans AIME, 1948, 175: 372-394.
|
| [19] |
ZHANG, S S, LI M Q, LIU Y G, et al. The growth behavior of austenite grain in the heating process of 300M steel[J]. Materials Science and Engineering: A, 2011, 528: 4967-4972. doi: 10.1016/j.msea.2011.02.089
|
| [20] |
CHEN M A, WU C S, YANG M, et al. Response of second phase particles in Ti-V-Nb microalloyed steel during weld thermal cycling[J]. Acta Metallurgica Sinica, 2004, 40(2): 148-154. (陈茂爱, 武传松, 杨敏, 等. Ti-V-Nb微合金钢第二相粒子在焊接热循环过程中的变化规律[J]. 金属学报, 2004, 40(2): 148-154.
CHEN M A, WU C S, YANG M, et al. Response of second phase particles in Ti-V-Nb microalloyed steel during weld thermal cycling[J]. Acta Metallurgica Sinica, 2004, 40(2): 148-154.
|
| [21] |
FENG R, LI S L, LI Z S, et al. Characteristic of diphase precipitate of Nb-V-Ti microalloyed steel[J]. Transactions of Materials and Heat Treatment, 2013, 34(2): 37-41. (冯锐, 李胜利, 李贞顺, 等. Nb-V-Ti微合金钢复合析出相的特征[J]. 材料热处理学报, 2013, 34(2): 37-41.
FENG R, LI S L, LI Z S, et al. Characteristic of diphase precipitate of Nb-V-Ti microalloyed steel[J]. Transactions of Materials and Heat Treatment, 2013, 34(2): 37-41.
|
| [22] |
LUO A A, KUBIC R C, TARTAGLIA J M. Microstructure and fatigue properties of hydroformed aluminum alloys 6063 and 5754[J]. Metallurgical & Materials Transactions A, 2003, 34: 2549-2557.
|
| [23] |
TSUJI N, OKUNO S, MATSUURA T. Mechanical properties as a function of grain size in ultrafine grained aluminum and iron fabricated by ARB and annealing process[J]. Materials Science Forum, 2003(Pt.3): 426/432.
|
| [24] |
ANDERSEN I, GRONG O, RYUM N. Analytical modelling of grain growth in metals and alloys in the presence of growing and dissolving precipitates—II. Abnormal grain growth[J]. Acta Metallurgica Et Materialia, 1995, 43(7): 2689-2700. doi: 10.1016/0956-7151(94)00489-5
|