| Citation: | CUI Guodong, ZHU Yanlin, MA Kaihui, LIU Lingling, LIAO Zhehan, BAI Chenguang. Research on the prediction model of hot metal temperature in vanadium-titanium magnetite blast furnace based on deep learning[J]. IRON STEEL VANADIUM TITANIUM, 2025, 46(5): 1-12. doi: 10.7513/j.issn.1004-7638.2025.05.001 |
| [1] |
BAI C G, LÜ X W, QIU G B, et al. Research progress on high efficiency metallurgy and clean extraction of vanadium-titanium magnetite ore in Panxi area[J]. The Chinese Journal of Process Engineering, 2022, 22(10): 1390-1399. (白晨光, 吕学伟, 邱贵宝, 等. 攀西钒钛磁铁矿资源高效冶金及清洁提取研究进展[J]. 过程工程学报, 2022, 22(10): 1390-1399. doi: 10.12034/j.issn.1009-606X.222302
BAI C G, LÜ X W, QIU G B, et al. Research progress on high efficiency metallurgy and clean extraction of vanadium-titanium magnetite ore in Panxi area[J]. The Chinese Journal of Process Engineering, 2022, 22(10): 1390-1399. doi: 10.12034/j.issn.1009-606X.222302
|
| [2] |
ZHENG K, WANG W, GAN X, et al. Research on theoretical combustion temperature control of V-Ti magnetite blast furnace smelting[J]. Iron Steel Vanadium Titanium, 2024, 45(5): 130-138. (郑魁, 王炜, 干显, 等. 钒钛磁铁矿高炉冶炼理论燃烧温度控制研究[J]. 钢铁钒钛, 2024, 45(5): 130-138.
ZHENG K, WANG W, GAN X, et al. Research on theoretical combustion temperature control of V-Ti magnetite blast furnace smelting[J]. Iron Steel Vanadium Titanium, 2024, 45(5): 130-138.
|
| [3] |
HE Y Y, LIU Q C, YANG J, et al. Experimental investigation on fluidity of hot metal bearing titanium[J]. Iron Steel Vanadium Titanium, 2010, 31(2): 10-14. (贺媛媛, 刘清才, 杨剑, 等. 含钛铁水流动性能研究[J]. 钢铁钒钛, 2010, 31(2): 10-14.
HE Y Y, LIU Q C, YANG J, et al. Experimental investigation on fluidity of hot metal bearing titanium[J]. Iron Steel Vanadium Titanium, 2010, 31(2): 10-14.
|
| [4] |
HOU P, YU W Z, BAI C G, et al. Viscous flow properties and influencing factors of vanadium-titanium magnetite smelting iron[J]. lron and Steel, 2022, 57(1): 57-65. (侯飘, 余文轴, 白晨光, 等. 钒钛磁铁矿冶炼铁水的黏流性能及其影响因素[J]. 钢铁, 2022, 57(1): 57-65.
HOU P, YU W Z, BAI C G, et al. Viscous flow properties and influencing factors of vanadium-titanium magnetite smelting iron[J]. lron and Steel, 2022, 57(1): 57-65.
|
| [5] |
PAN D, JIANG Z H, XU C, et al. Research progress of measurement methods of molten iron temperature in blast furnace[J]. Chinese Journal of Scientific Instrument, 2023, 44(12): 280-296. (潘冬, 蒋朝辉, 许川, 等. 高炉铁水温度检测方法的研究进展[J]. 仪器仪表学报, 2023, 44(12): 280-296.
PAN D, JIANG Z H, XU C, et al. Research progress of measurement methods of molten iron temperature in blast furnace[J]. Chinese Journal of Scientific Instrument, 2023, 44(12): 280-296.
|
| [6] |
CHU M S, WANG H T, LIU Z G, et al. Research progress on mathematical modeling of blast furnace ironmaking process[J]. Iron and Steel, 2014, 49(11): 1-8. (储满生, 王宏涛, 柳政根, 等. 高炉炼铁过程数学模拟的研究进展[J]. 钢铁, 2014, 49(11): 1-8.
CHU M S, WANG H T, LIU Z G, et al. Research progress on mathematical modeling of blast furnace ironmaking process[J]. Iron and Steel, 2014, 49(11): 1-8.
|
| [7] |
ZUO H B, ZHANG J L, YANG T J. Research and application on heat transfer model of hearth including phase-change heat transfer[J]. The Chinese Journal of Process Engineering, 2008(S1): 123-129. (左海滨, 张建良, 杨天钧. 考虑相变传热的炉缸传热模型的研究与应用[J]. 过程工程学报, 2008(S1): 123-129. doi: 10.3321/j.issn:1009-606X.2008.z1.027
ZUO H B, ZHANG J L, YANG T J. Research and application on heat transfer model of hearth including phase-change heat transfer[J]. The Chinese Journal of Process Engineering, 2008(S1): 123-129. doi: 10.3321/j.issn:1009-606X.2008.z1.027
|
| [8] |
LIN W K, RAO J T, LI Z L. Burden structure model analysis and production practice of smelting V-Ti ore in blast furnace[J]. Sichuan Metallurgy, 2022, 44(4): 12-16. (林文康, 饶家庭, 李志霖. 高炉冶炼钒钛矿炉料结构模型分析及生产实践[J]. 四川冶金, 2022, 44(4): 12-16.
LIN W K, RAO J T, LI Z L. Burden structure model analysis and production practice of smelting V-Ti ore in blast furnace[J]. Sichuan Metallurgy, 2022, 44(4): 12-16.
|
| [9] |
LI H W, LI X, LIU X J, et al. Evaluation model for comprehensive operation condition of vanadium and titanium blast furnace based on big data mining[J]. Iron & Steel, 2023, 58(10): 51-66. (李红玮, 李欣, 刘小杰, 等. 基于大数据挖掘的钒钛高炉综合运行状态评价模型[J]. 钢铁, 2023, 58(10): 51-66.
LI H W, LI X, LIU X J, et al. Evaluation model for comprehensive operation condition of vanadium and titanium blast furnace based on big data mining[J]. Iron & Steel, 2023, 58(10): 51-66.
|
| [10] |
LIU X J, WEN L Y X, ZHANG Y J, et al. Prediction model of blast furnace hearth activity based ontheoretical analysis and intelligent algorithm[J]. China Metallurgy, 2024, 34(2): 83-95. (刘小杰, 温梁亦欣, 张玉洁, 等. 基于理论分析和智能算法的高炉炉缸活性预测模型[J]. 中国冶金, 2024, 34(2): 83-95.
LIU X J, WEN L Y X, ZHANG Y J, et al. Prediction model of blast furnace hearth activity based ontheoretical analysis and intelligent algorithm[J]. China Metallurgy, 2024, 34(2): 83-95.
|
| [11] |
ALOM M Z, TAHA T M, YAKOPCIC C, et al. The history began from alexnet: A comprehensive survey on deep learning approaches[J]. ArXiv Preprint ArXiv: 1803, 0116, 4: 2018.
|
| [12] |
SILVER D, HUANG A, MADDISON C J, et al. Mastering the game of Go with deep neural networks and tree search[J]. Nature, 2016, 529(7587): 484-489. doi: 10.1038/nature16961
|
| [13] |
JUMPER J, EVANS R, PRITZEL A, et al. Highly accurate protein structure prediction with AlphaFold[J]. Nature, 2021, 596(7873): 583-589. doi: 10.1038/s41586-021-03819-2
|
| [14] |
JIA W, WANG H, CHEN M, et al. Pushing the limit of molecular dynamics with ab initio accuracy to 100 million atoms with machine learning[C]. SC20: International Conference for High Performance Computing, Networking, Storage and Analysis, 2020: 1-14.
|
| [15] |
WANG Z Y, JIANG D W, WANG X D, et al. Prediction of blast furnace hot metal temperature based on support vector regression and extreme learning machine[J]. Chinese Journal of Engineering, 2021, 43(4): 569-576. (王振阳, 江德文, 王新东, 等. 基于支持向量回归与极限学习机的高炉铁水温度预测[J]. 工程科学学报, 2021, 43(4): 569-576.
WANG Z Y, JIANG D W, WANG X D, et al. Prediction of blast furnace hot metal temperature based on support vector regression and extreme learning machine[J]. Chinese Journal of Engineering, 2021, 43(4): 569-576.
|
| [16] |
LI Y, ZHANG S, YIN Y, et al. A soft sensing scheme of gas utilization ratio prediction for blast furnace via Improved extreme learning machine[J]. Neural Processing Letters, 2018, 50(2): 1191-1213.
|
| [17] |
CUI Z, YANG A, WANG L, et al. Dynamic prediction model of silicon content in molten iron based on comprehensive characterization of furnace temperature[J]. Metals, 2022, 12(9): 1403. doi: 10.3390/met12091403
|
| [18] |
ZHANG X L, YU K, ZHANG S N, et al. Prediction method of blast furnace hearth thermal state by introducing time series of water temperature difference[J]. China Measurement & Test, 2022, 48(6): 74-79. (张小乐, 于凯, 张胜男, 等. 引入水温差时间序列的高炉炉缸热状态预测方法[J]. 中国测试, 2022, 48(6): 74-79.
ZHANG X L, YU K, ZHANG S N, et al. Prediction method of blast furnace hearth thermal state by introducing time series of water temperature difference[J]. China Measurement & Test, 2022, 48(6): 74-79.
|
| [19] |
ZHANG X, KANO M, MATSUZAKI S. Ensemble pattern trees for predicting hot metal temperature in blast furnace[J]. Computers & Chemical Engineering, 2019, 121: 442-449.
|
| [20] |
CARDOSO W, DI FELICE R. A novel committee machine to predict the quantity of impurities in hot metal produced in blast furnace[J]. Computers & Chemical Engineering, 2022, 163.
|
| [21] |
CARDOSO W, DI FELICE R, BAPTISTA R C. Artificial neural network for predicting silicon content in the hot metal produced in a blast furnace fueled by metallurgical coke[J]. Materials Research, 2022, 25.
|
| [22] |
GU Z Y, LÜ D H, LI X L, et al. Fusion prediction of blast furnace temperature based on combination of knowledge and data[J]. China Measurement & Test, 2024, 50(3): 19-28. (古志远, 吕东澔, 李向丽, 等. 基于知识与数据相结合的高炉炉温融合预测[J]. 中国测试, 2024, 50(3): 19-28.
GU Z Y, LÜ D H, LI X L, et al. Fusion prediction of blast furnace temperature based on combination of knowledge and data[J]. China Measurement & Test, 2024, 50(3): 19-28.
|
| [23] |
SONG J, XING X, PANG Z, et al. Prediction of silicon content in the hot metal of a blast furnace based on FPA-BP model[J]. Metals, 2023, 13(5): 918. doi: 10.3390/met13050918
|
| [24] |
LIU X, ZHANG Y, LI X, et al. Control of silicon content in blast furnace iron based on GRA-LSTM-BAS prediction methods[J]. Ironmaking & Steelmaking: Processes, Products and Applications, 2024, 51 (2): 127-138.
|
| [25] |
HOCHREITER S, SCHMIDHUBER J. Long short-term memory[J]. Neural Computation, 1997, 9(8): 1735-1780. doi: 10.1162/neco.1997.9.8.1735
|
| [26] |
SHI Q, TANG J, CHU M. Process metallurgy and data-driven prediction and feedback of blast furnace heat indicators[J]. International Journal of Minerals, Metallurgy and Materials, 2024, 31(6): 1228-1240. doi: 10.1007/s12613-023-2693-7
|
| [27] |
SHI Q, TANG J, CHU M. Key issues and progress of industrial big data-based intelligent blast furnace ironmaking technology[J]. International Journal of Minerals, Metallurgy and Materials, 2023, 30(9): 1651-1666. doi: 10.1007/s12613-023-2636-3
|
| [28] |
HUA J M, ZHANG L L. Influence and control over blast furnace smelting by blast kinetic energy[J]. Ironmaking, 2005(4): 5-8. (华建明, 张龙来. 鼓风动能对高炉冶炼的影响及控制[J]. 炼铁, 2005(4): 5-8.
HUA J M, ZHANG L L. Influence and control over blast furnace smelting by blast kinetic energy[J]. Ironmaking, 2005(4): 5-8.
|
| [29] |
LIN A C, QIU G B, ZHANG X L, et al. Development and application of comprehensive diagnosticc ontrol model for blast furnace production[J]. Iron and Steel, 2022, 57(12): 41-56. (林安川, 邱贵宝, 张晓雷, 等. 高炉生产综合诊控模型研发及应用[J]. 钢铁, 2022, 57(12): 41-56.
LIN A C, QIU G B, ZHANG X L, et al. Development and application of comprehensive diagnosticc ontrol model for blast furnace production[J]. Iron and Steel, 2022, 57(12): 41-56.
|
| [30] |
ZHANG Z W, CHE X R, ZHANG H B. Establishment and validation of multi-objective optimization model of blast furnace[J]. The Chinese Journal of Process Engineering, 2017, 17(1): 178-182. (张宗旺, 车晓锐, 张宏博. 高炉多目标优化模型的建立及验证[J]. 过程工程学报, 2017, 17(1): 178-182.
ZHANG Z W, CHE X R, ZHANG H B. Establishment and validation of multi-objective optimization model of blast furnace[J]. The Chinese Journal of Process Engineering, 2017, 17(1): 178-182.
|
| [31] |
RESHEF D N, RESHEF Y A, FINUCANE H K, et al. Detecting novel associations in large data sets[J]. Science, 2011, 334(6062): 1518-1524. doi: 10.1126/science.1205438
|
| [32] |
HU J, GAO C H. Thermal state prediction of blast furnace based on multi-task learning[J]. China Metallurgy, 2023, 33(7): 81-90. (胡进, 郜传厚. 基于多任务学习的高炉热状态预测[J]. 中国冶金, 2023, 33(7): 81-90.
HU J, GAO C H. Thermal state prediction of blast furnace based on multi-task learning[J]. China Metallurgy, 2023, 33(7): 81-90.
|
| [33] |
ZENG A, CHEN M, ZHANG L, et al. Are transformers effective for time series forecasting?[C]. Proceedings of The AAAI Conference on Artificial Intelligence, 2023: 11121-11128.
|
| [34] |
VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[J]. Advances in Neural Information Processing Systems, 2017, 30.
|