Volume 46 Issue 5
Oct.  2025
Turn off MathJax
Article Contents
LIAO Zhehan, WU Jianlong, HUANG Junjie, GUO Honglie, XU Jian. Research on the remaining useful life estimation model of blast furnace tuyere based on image recognition[J]. IRON STEEL VANADIUM TITANIUM, 2025, 46(5): 13-22. doi: 10.7513/j.issn.1004-7638.2025.05.002
Citation: LIAO Zhehan, WU Jianlong, HUANG Junjie, GUO Honglie, XU Jian. Research on the remaining useful life estimation model of blast furnace tuyere based on image recognition[J]. IRON STEEL VANADIUM TITANIUM, 2025, 46(5): 13-22. doi: 10.7513/j.issn.1004-7638.2025.05.002

Research on the remaining useful life estimation model of blast furnace tuyere based on image recognition

doi: 10.7513/j.issn.1004-7638.2025.05.002
More Information
  • Received Date: 2025-07-31
  • Accepted Date: 2025-09-05
  • Rev Recd Date: 2025-09-04
  • Publish Date: 2025-10-30
  • As the primary source of in-furnace heat, the condition detection of blast furnace tuyeres mainly relies on manual experience currently. This practice often leads to delayed replacement of damaged tuyeres and unnecessary shutdown maintenance. To address the above issues, this paper proposes a machine learning model named BVT-RULNet, specifically designed to predict the Remaining Useful Life (RUL) of tuyeres. The model employs an Ensemble Learning (EL) strategy that integrates three base classifiers with identical architectures. Each base classifier consists of a VGG16 Convolutional Neural Network (CNN) frontend and a Vision Transformer (ViT) module. During model training, a discrete RUL dataset constructed based on the images covering the complete life cycle of the tuyere was used, and an independent test dataset was used during the evaluation process. Results show that the model achieves excellent metrics on the test set, with accuracy, precision, recall, and F1 score reaching 85.14%, 84.70%, 84.59%, and 84.64%, respectively, all outperforming the comparison models. Therefore, BVT-RULNet model demonstrates high accuracy and strong generalization for tuyere RUL classification and prediction, providing an effective solution for intelligent monitoring of blast furnace tuyere condition.
  • loading
  • [1]
    WANG G, LIAO Z H, HU Z W, et al. Influence of the residual iron on the erosion of carbon bricks in a 4000 m3 blast furnace hearth: From the measured properties to the proposed mechanisms[J]. Metallurgical and Materials Transactions B, 2022: 53, 931-937.
    [2]
    YU X B, SHEN Y S. Transient state modeling of industry-scale ironmaking blast furnaces[J]. Chemical Engineering Science, 2022, 248: 117185. doi: 10.1016/j.ces.2021.117185
    [3]
    ZHENG K, ZHAO P, HU P, et al. Study on the effects of oxygen enrichment modes on the tuyere raceway states of blast furnace[J]. Iron Steel Vanadium Titanium, 2024, 45(6): 108-118. (郑魁, 赵鹏, 胡鹏, 等. 富氧方式对高炉风口回旋区状态的影响研究[J]. 钢铁钒钛, 2024, 45(6): 108-118.

    ZHENG K, ZHAO P, HU P, et al. Study on the effects of oxygen enrichment modes on the tuyere raceway states of blast furnace[J]. Iron Steel Vanadium Titanium, 2024, 45(6): 108-118.
    [4]
    ZHANG J, WANG R, HU R, et al. Failure mode and mechanism of a blast furnace tuyere[J]. Engineering Failure Analysis, 2022, 137: 106294. doi: 10.1016/j.engfailanal.2022.106294
    [5]
    HUANG C C, BORN S, KLAASSEN M, et al. Comprehensive numerical modeling of raceways in blast furnaces[J]. Chemical Engineering Science, 2024, 289: 119857. doi: 10.1016/j.ces.2024.119857
    [6]
    MA S W, QIU G B, LÜ X W, et al. Theoretical research on the effects of oxygen enrichment and pulverized coal injection on performance of tuyere raceway zone in blast furnace[J]. Iron Steel Vanadium Titanium, 2012, 33(4): 62-67. (马世伟, 邱贵宝, 吕学伟, 等. 富氧喷煤对高炉风口回旋区特征影响的理论研究[J]. 钢铁钒钛, 2012, 33(4): 62-67.

    MA S W, QIU G B, LÜ X W, et al. Theoretical research on the effects of oxygen enrichment and pulverized coal injection on performance of tuyere raceway zone in blast furnace[J]. Iron Steel Vanadium Titanium, 2012, 33(4): 62-67.
    [7]
    ZHOU D D, CHENG S S, ZHANG R X, et al. Study of the combustion behaviour and temperature of pulverised coal in a tuyere zone of blast furnace[J]. Ironmaking & Steelmaking, 2018, 45(7): 665-671.
    [8]
    LI G S, HUANG P Y, CHENG P, et al. Analysis of the failure mechanism of a blast furnace tuyere sleeve with protective coating[J]. Engineering Failure Analysis, 2023, 153: 107537. doi: 10.1016/j.engfailanal.2023.107537
    [9]
    WANG H Y, ZHANG J L, LIU Z J, et al. Damage mechanism of blast furnace tuyere by zinc[J]. Ironmaking & Steelmaking, 2018, 45(6): 560-565.
    [10]
    CHAI Y F, ZHANG J L, NING X J, et al. Mechanism research on melting loss of coppery tuyere small sleeve in blast furnace[J]. High Temperature Materials and Processes, 2016, 35(1): 73-80. doi: 10.1515/htmp-2014-0149
    [11]
    LEI M, DU P, ZHU H, et al. Influence of blasting conditioning parameters on tuyere life of shagang's 5800 m3 BF[J]. Ironmaking, 2022, 41(3): 22-26. (雷鸣, 杜屏, 朱华, 等. 沙钢 5800 m3高炉下部调剂参数对风口寿命的影响[J]. 炼铁, 2022, 41(3): 22-26.

    LEI M, DU P, ZHU H, et al. Influence of blasting conditioning parameters on tuyere life of shagang's 5800 m3 BF[J]. Ironmaking, 2022, 41(3): 22-26.
    [12]
    GUGULOTHU N, TV V, MALHOTRA P, et al. Predicting remaining useful life using time series embeddings based on recurrent neural networks[J]. arXiv preprint arXiv: 1709, 0107, 3: 2017.
    [13]
    WANG Y D, ZHAO Y F, ADDEPALLI S. Remaining useful life prediction using deep learning approaches: a review[J]. Procedia Manufacturing, 2020, 49: 81-88. doi: 10.1016/j.promfg.2020.06.015
    [14]
    SI X S, WANG W B, HU C H, et al. Remaining useful life estimation – a review on the statistical data driven approaches[J]. European Journal of Operational Research, 2011, 213(1): 1-14. doi: 10.1016/j.ejor.2010.11.018
    [15]
    PUTTINGER S, STOCKER H. Improving blast furnace raceway blockage detection. Part 1: classification of blockage events and processing framework[J]. ISIJ International, 2019, 59(3): 466-473. doi: 10.2355/isijinternational.ISIJINT-2018-530
    [16]
    PUTTINGER S, STOCKER H. Improving blast furnace raceway blockage detection. Part 2: signal processing of hot blast pressure data[J]. ISIJ International, 2019, 59(3): 474-480. doi: 10.2355/isijinternational.ISIJINT-2018-531
    [17]
    PUTTINGER S, STOCKER H. Improving blast furnace raceway blockage detection. Part 3: visual detection based on tuyere camera images[J]. ISIJ International, 2019, 59(3): 481-488. doi: 10.2355/isijinternational.ISIJINT-2018-532
    [18]
    O’SHEA K, NASH R. An introduction to convolutional neural networks[J/OL]. arXiv preprint arXiv: 2015. https://arxiv.org/abs/1511.08458.
    [19]
    LI Q, WANG Z J, WANG S, et al. A deep learning–based diagnosis model driven by tuyere images big data for iron‐making blast furnaces[J]. Steel Research International, 2022, 93(8): 2100826. doi: 10.1002/srin.202100826
    [20]
    WANG R H, LI Z Y, YANG L Z, et al. Application of efficient channel attention residual mechanism in blast furnace tuyere image anomaly detection[J]. Applied Sciences, 2022, 12(15): 7823. doi: 10.3390/app12157823
    [21]
    SONG C, LI Z Y, LI Y M, et al. Research on blast furnace tuyere image anomaly detection, based on the local channel attention residual mechanism[J]. Applied Sciences, 2023, 13(2): 802. doi: 10.3390/app13020802
    [22]
    ZHOU B, YE H, ZHANG H F, et al. Process monitoring of iron-making process in a blast furnace with PCA-based methods[J]. Control Engineering Practice, 2016, 47: 1-14. doi: 10.1016/j.conengprac.2015.11.006
    [23]
    CUI G M, JIANG Z G, LIU P L, et al. Prediction of blast furnace temperature based on multi-information fusion of image and data[C]// 2018 Chinese Automation Congress (CAC). Xi’an: 2018: 2317-2322.
    [24]
    LIU B N, WU M H. Intelligent modeling of tuyere raceway of blast furnace[C]// 2021 33rd Chinese Control and Decision Conference (CCDC). Kunming: 2021: 5466-5471.
    [25]
    LIU Y R, ZHANG H M, SHEN Y S. A data-driven approach for the quick prediction of in-furnace phenomena of pulverized coal combustion in an ironmaking blast furnace[J]. Chemical Engineering Science, 2022, 260: 117945. doi: 10.1016/j.ces.2022.117945
    [26]
    ZHOU D D, XU K, BAI J Y, et al. On-line detecting the tuyere coke size and temperature distribution of raceway zone in a working blast furnace[J]. Fuel, 2022, 316: 123349. doi: 10.1016/j.fuel.2022.123349
    [27]
    WANG Y T, HUANG P, YANG G. A visual PCI blockage detection in blast furnace raceway[J]. ISIJ International, 2020, 60(3): 519-527. doi: 10.2355/isijinternational.ISIJINT-2019-367
    [28]
    DONG X B, YU Z W, CAO W M, et al. A survey on ensemble learning[J]. Frontiers of Computer Science, 2020, 14(2): 241-258. doi: 10.1007/s11704-019-8208-z
    [29]
    DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An image is worth 16 x16 words: transformers for image recognition at scale[J]. arXiv preprint arXiv: 2010, 1192, 9: 2020.
    [30]
    PATRO S, SAHU K. Normalization: a preprocessing stage[J]. arXiv preprint arXiv: 1503, 0646, 2: 2015.
    [31]
    KUMAR B. Image denoising based on gaussian/bilateral filter and its method noise thresholding[J]. Image and Video Processing, 2013, 7: 1159-1172. doi: 10.1007/s11760-012-0372-7
    [32]
    GUO Y Y, WANG X, XIAO P C, et al. An ensemble learning framework for convolutional neural network based on multiple classifiers[J]. Soft Computing, 2020, 24(5): 3727-3735. doi: 10.1007/s00500-019-04141-w
    [33]
    BREIMAN L. Bagging predictors[J]. Machine Learning, 1996, 24(2): 123-140. doi: 10.1023/A:1018054314350
    [34]
    MASCARENHAS S, AGARWAL M. A comparison between VGG16, VGG19 and ResNet50 architecture frameworks for image classification[C]// 2021 International Conference on Disruptive Technologies for Multi-Disciplinary Research and Applications (CENTCON). Bengaluru: 2021: 96-99.
    [35]
    NEWTON D, YOUSEFIAN F, PASUPATHY R. Stochastic gradient descent: recent trends[J]. Recent Advances in Optimization and Modeling of Contemporary Problems, 2018, 193-220.
    [36]
    ZHANG Z L, SABUNCU M. Generalized cross entropy loss for training deep neural networks with noisy labels[C]// 2018 32nd Conference on Neural Information Processing Systems (NeurIPS), Montréal: 2018:31.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(1)

    Article Metrics

    Article views (43) PDF downloads(10) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return