Volume 46 Issue 5
Oct.  2025
Turn off MathJax
Article Contents
FENG Pengbo, LOU Guofeng, WU Xinchen, XIAO Yongli. Numerical simulation of continuous solidification process for blast furnace slag droplets[J]. IRON STEEL VANADIUM TITANIUM, 2025, 46(5): 23-32. doi: 10.7513/j.issn.1004-7638.2025.05.003
Citation: FENG Pengbo, LOU Guofeng, WU Xinchen, XIAO Yongli. Numerical simulation of continuous solidification process for blast furnace slag droplets[J]. IRON STEEL VANADIUM TITANIUM, 2025, 46(5): 23-32. doi: 10.7513/j.issn.1004-7638.2025.05.003

Numerical simulation of continuous solidification process for blast furnace slag droplets

doi: 10.7513/j.issn.1004-7638.2025.05.003
More Information
  • Received Date: 2025-05-27
  • Accepted Date: 2025-06-20
  • Rev Recd Date: 2025-06-18
  • Publish Date: 2025-10-30
  • The crystallization behavior of granulated blast furnace slag droplets during cooling reduces their commercial value. In order to investigate the solidification characteristics of droplets under varying cooling conditions, a numerical simulation of the continuous solidification process was performed by integrating a droplet flight model with an enthalpy-based slag crystallization model. The results show that an increase in droplet size leads to a significant increase in the distance required for surface crust formation, and also results in an increase in the average crystalline phase content after cooling. Droplet size becomes a key factor governing solidification behavior and crystalline phase growth by influencing internal heat conduction rates and cooling uniformity. A 5-mm molten droplet at 15 m/s initial velocity requires 16 m horizontal flight to avoid remelting during cooling; increasing the primary fluidized bed convective heat transfer coefficient from 70 W·m−2·K−1 to 150 W·m−2·K−1 shortens this distance to 12 m. Two-stage molten droplet cooling must be matched: extending flight distance during surface crust formation reduces bed cooling intensity requirements, while increasing bed cooling intensity decreases granulation device size.
  • loading
  • [1]
    SI W H, ZHANG Y Q. Current status and development trend of waste heat recovery technology for high-temperature slag[J]. Yizhong Technology, 2025(1): 1-4. (姒伟华, 张元奇. 高温熔渣余热回收技术现状及发展趋势[J]. 一重技术, 2025(1): 1-4. doi: 10.3969/j.issn.1673-3355.2025.01.001

    SI W H, ZHANG Y Q. Current status and development trend of waste heat recovery technology for high-temperature slag[J]. Yizhong Technology, 2025(1): 1-4. doi: 10.3969/j.issn.1673-3355.2025.01.001
    [2]
    DING B, LIAO Q, ZHU X, et al. Deep insight into phase transition and crystallization of high temperature molten slag during cooling: A review[J]. Applied Thermal Engineering, 2021, 184: 116260. doi: 10.1016/j.applthermaleng.2020.116260
    [3]
    ZHANG X, WANG S, WU Z, et al. Optimizing heat transfer and solidification crystallization in dry granulation of blast furnace slag[J]. Powder Technology, 2024, 447: 120202. doi: 10.1016/j.powtec.2024.120202
    [4]
    KUMAR S S, SINGH A R, KARTIK S. Utilizing ground granulated blast furnace slag during carbon sequestration in concrete[J]. Journal of Materials in Civil Engineering, 2025, 37(2): 12-27.
    [5]
    LIU J X, QIN Q, YU Q B. The effect of size distribution of slag particles obtained in dry granulation on blast furnace slag cement strength[J]. Powder Technology, 2020, 362(C): 32-36.
    [6]
    KAVEH T M, MOHAMMADI E, MEHRNAHAD H. Durability of steel slag as railway ballast under freezing–thawing and salt crystallization weathering[J]. Journal of Material Cycles and Waste Management, 2025, 27(3): 1-14.
    [7]
    SUN R J, KANG Y, SHAO C, et al. Numerical simulation on intensified cooling and solidification process of gas-quenched blast furnace slag beads[J]. China Metallurgy, 2024, 34(9): 34-44. (孙瑞靖, 康月, 邵宸, 等. 气淬高炉渣珠强化冷却凝固过程数值仿真[J]. 中国冶金, 2024, 34(9): 34-44.

    SUN R J, KANG Y, SHAO C, et al. Numerical simulation on intensified cooling and solidification process of gas-quenched blast furnace slag beads[J]. China Metallurgy, 2024, 34(9): 34-44.
    [8]
    LI X H, WANG X S, LIU Z L, et al. New direction for comprehensive utilization of high-titanium blast furnace slag[J]. Iron Steel Vanadium Titanium, 2009, 30(3): 10-16. (李兴华, 王雪松, 刘知路, 等. 高钛高炉渣综合利用新方向[J]. 钢铁钒钛, 2009, 30(3): 10-16. doi: 10.7513/j.issn.1004-7638.2009.03.002

    LI X H, WANG X S, LIU Z L, et al. New direction for comprehensive utilization of high-titanium blast furnace slag[J]. Iron Steel Vanadium Titanium, 2009, 30(3): 10-16. doi: 10.7513/j.issn.1004-7638.2009.03.002
    [9]
    FANG W Y, WANG H, ZHU X, et al. Heat transfer characteristics of molten slag in rotary cup granulation process[J]. Iron and Steel, 2020, 55(8): 151-159. (方维扬, 王宏, 朱恂, 等. 转杯粒化工艺高温熔渣换热数值模拟[J]. 钢铁, 2020, 55(8): 151-159.

    FANG W Y, WANG H, ZHU X, et al. Heat transfer characteristics of molten slag in rotary cup granulation process[J]. Iron and Steel, 2020, 55(8): 151-159.
    [10]
    SUN G T. Study on mechanical centrifugal granulation characteristics of blast furnace slag[D]. Qingdao: Qingdao University, 2020. (孙广彤. 高炉熔渣机械离心粒化特性研究[D]. 青岛: 青岛大学, 2020.

    SUN G T. Study on mechanical centrifugal granulation characteristics of blast furnace slag[D]. Qingdao: Qingdao University, 2020.
    [11]
    SHAO C, KANG Y, XING H W, et al. Experimental and simulation on the granulation process of blast furnace slag[J]. Iron Steel Vanadium Titanium, 2024, 45(1): 104-114. (邵宸, 康月, 邢宏伟, 等. 高炉熔渣粒化工艺试验及其数值仿真研究分析[J]. 钢铁钒钛, 2024, 45(1): 104-114. doi: 10.7513/j.issn.1004-7638.2024.01.016

    SHAO C, KANG Y, XING H W, et al. Experimental and simulation on the granulation process of blast furnace slag[J]. Iron Steel Vanadium Titanium, 2024, 45(1): 104-114. doi: 10.7513/j.issn.1004-7638.2024.01.016
    [12]
    CHANG Q M, CHENG Y K, LI X W, et al. Modeling and simulation study on dry centrifugal granulation of blast furnace slag[J]. Iron Steel Vanadium Titanium, 2014, 35(1): 69-73. (常庆明, 程永楷, 李先旺, 等. 高炉渣干式离心粒化的建模仿真研究[J]. 钢铁钒钛, 2014, 35(1): 69-73. doi: 10.7513/j.issn.1004-7638.2014.01.014

    CHANG Q M, CHENG Y K, LI X W, et al. Modeling and simulation study on dry centrifugal granulation of blast furnace slag[J]. Iron Steel Vanadium Titanium, 2014, 35(1): 69-73. doi: 10.7513/j.issn.1004-7638.2014.01.014
    [13]
    LI X H. Study on mechanism of gas-liquid atomization and solidification heat transfer characteristics of blast furnace slag [D]. Beijing: University of Science and Technology Beijing, 2025. (刘晓宏. 高炉熔渣气雾粒化机理及凝固换热特性研究[D]. 北京: 北京科技大学, 2025.

    LI X H. Study on mechanism of gas-liquid atomization and solidification heat transfer characteristics of blast furnace slag [D]. Beijing: University of Science and Technology Beijing, 2025.
    [14]
    WANG Z B, LIU Y, ZHANG Y Z, et al. Experimental study on heat recovery of blast furnace slag by gas quenching granulation[J]. Iron Steel Vanadium Titanium, 2018, 39(4): 93-98. (王子兵, 刘跃, 张玉柱, 等. 高炉熔渣气淬粒化热量回收试验研究[J]. 钢铁钒钛, 2018, 39(4): 93-98. doi: 10.7513/j.issn.1004-7638.2018.04.016

    WANG Z B, LIU Y, ZHANG Y Z, et al. Experimental study on heat recovery of blast furnace slag by gas quenching granulation[J]. Iron Steel Vanadium Titanium, 2018, 39(4): 93-98. doi: 10.7513/j.issn.1004-7638.2018.04.016
    [15]
    LIU X Y, ZHU X, LIAO Q, et al. Theoretic analysis on transient solidification behaviors of a molten blast furnace slag particle[J]. CIESC Journal, 2014, 65(S1): 285-291. (刘小英, 朱恂, 廖强, 等. 高温熔融高炉渣颗粒相变冷却特性分析[J]. 化工学报, 2014, 65(S1): 285-291.

    LIU X Y, ZHU X, LIAO Q, et al. Theoretic analysis on transient solidification behaviors of a molten blast furnace slag particle[J]. CIESC Journal, 2014, 65(S1): 285-291.
    [16]
    QIU Y J, ZHU X, WANG H, et al. Three-dimensional simulation of solidification and heat transfer for air-cooling molten blast furnace slag droplet[J]. CIESC Journal, 2014, 65(S1): 340-345. (邱勇军, 朱恂, 王宏, 等. 熔渣颗粒空冷相变换热的三维数值模拟[J]. 化工学报, 2014, 65(S1): 340-345.

    QIU Y J, ZHU X, WANG H, et al. Three-dimensional simulation of solidification and heat transfer for air-cooling molten blast furnace slag droplet[J]. CIESC Journal, 2014, 65(S1): 340-345.
    [17]
    WANG H, DING B, LIU X Y, et al. Solidification behaviors of a molten blast furnace slag droplet cooled by air[J]. Applied Thermal Engineering, 2017, 127: 915-924. doi: 10.1016/j.applthermaleng.2017.07.215
    [18]
    DING B, WANG H, ZHU X, et al. Crystallization behaviors of blast furnace (BF) slag in a phase-change cooling process[J]. Energy & Fuels, 2016, 30(4): 3331-3339.
    [19]
    DING B, ZHU X, WANG H, et al. Numerical investigation on phase change cooling and crystallization of a molten blast furnace slag droplet[J]. International Journal of Heat and Mass Transfer, 2018, 118: 471-479. doi: 10.1016/j.ijheatmasstransfer.2017.10.108
    [20]
    GAO J, FENG Y H, FENG D L, et al. Solidification with crystallization behavior of molten blast furnace slag particle during the cooling process[J]. International Journal of Heat and Mass Transfer, 2020, 146: 118888. doi: 10.1016/j.ijheatmasstransfer.2019.118888
    [21]
    GAO J, FENG Y H, FENG D L, et al. The effects of interactions between multiple blast furnace slag particles on crystallization characteristics[J]. International Journal of Heat and Mass Transfer, 2022, 185: 122374. doi: 10.1016/j.ijheatmasstransfer.2021.122374
    [22]
    FAN F H, MIN Z, YANG S L, et al. Numerical study of fluid dynamics and heat transfer property of dual fluidized bed gasifier[J]. Energy, 2021, 234: 74-83.
    [23]
    WANG B, QIU J Y, GUO Q H, et al. Numerical simulations of solidification characteristics of molten slag droplets in radiant syngas coolers for entrained-flow coal gasification[J]. ACS omega, 2021, 6(31): 20388-20397. doi: 10.1021/acsomega.1c02406
    [24]
    YANG P, MA C, MA G, et al. Waste heat recovery of blast furnace slag in moving bed: Influencing of structural parameters and operating parameters[J]. International Journal of Heat and Fluid Flow, 2024, 107: 109421. doi: 10.1016/j.ijheatfluidflow.2024.109421
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(15)  / Tables(1)

    Article Metrics

    Article views (34) PDF downloads(9) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return