| Citation: | LIU Weitao, LIU Gongguo, LIU Shuhan, SUN Wenqiang. Development and prospect of digital twin technology in vanadium-titanium ore-based iron and steel production process[J]. IRON STEEL VANADIUM TITANIUM, 2025, 46(5): 33-45. doi: 10.7513/j.issn.1004-7638.2025.05.004 |
| [1] |
National Bureau of Statistics of China. Statistical communiqué of the People's Republic of China on the 2024 national economic and social development[R/OL]. (2025-02-28) [2025-08-02]. https://www.stats.gov.cn/sj/zxfb/202502/t20250228_1958817.html. (国家统计局. 中华人民共和国2024年国民经济和社会发展统计公报[R/OL]. (2025-02-28) [2025-08-02]. https://www.stats.gov.cn/sj/zxfb/202502/t20250228_1958817.html.
National Bureau of Statistics of China. Statistical communiqué of the People's Republic of China on the 2024 national economic and social development[R/OL]. (2025-02-28) [2025-08-02]. https://www.stats.gov.cn/sj/zxfb/202502/t20250228_1958817.html.
|
| [2] |
World Steel Association. 2024 World Steel in Figures[R/OL]. (2024) [2025-08-03]. https://worldsteel.org/zh-hans/data/world-steel-in-figures/world-steel-in-figures-2024/. (世界钢铁协会. 2024年世界钢铁统计数据[R/OL]. (2024) [2025-08-03]. https://worldsteel.org/zh-hans/data/world-steel-in-figures/world-steel-in-figures-2024/.
World Steel Association. 2024 World Steel in Figures[R/OL]. (2024) [2025-08-03]. https://worldsteel.org/zh-hans/data/world-steel-in-figures/world-steel-in-figures-2024/.
|
| [3] |
WANG Y H. Study on reduction mechanism of vanadium oxides in process of smelting V-Ti-magnetite in blast furnace[D]. Chongqing: Chongqing University, 2010. (王永红. 高炉冶炼钒钛磁铁矿钒还原机理研究[D]. 重庆: 重庆大学, 2010.
WANG Y H. Study on reduction mechanism of vanadium oxides in process of smelting V-Ti-magnetite in blast furnace[D]. Chongqing: Chongqing University, 2010.
|
| [4] |
DU H G. Principle of blast furnace smelting of vanadium-titanium magnetite[M]. Beijing: Science Press, 1996. (杜鹤桂. 高炉冶炼钒钛磁铁矿原理[M]. 北京: 科学出版社, 1996.
DU H G. Principle of blast furnace smelting of vanadium-titanium magnetite[M]. Beijing: Science Press, 1996.
|
| [5] |
LI Y Y. Fundamental studies on the pre-concentration and separation of titanium from Ti-bearing blast furnace slag[D]. Beijing: University of Science and Technology Beijing, 2024. (李有余. 含钛高炉渣中钛预富集分离相关的基础研究[D]. 北京: 北京科技大学, 2024.
LI Y Y. Fundamental studies on the pre-concentration and separation of titanium from Ti-bearing blast furnace slag[D]. Beijing: University of Science and Technology Beijing, 2024.
|
| [6] |
HAN T. Investigation on metallization reduction - electromagnetic separation of vanadium-titanium magnetite in western Liaoning[D]. Shenyang: Northeastern University, 2022. (韩通. 辽西钒钛磁铁矿金属化还原−电磁选分研究[D]. 沈阳: 东北大学, 2022.
HAN T. Investigation on metallization reduction - electromagnetic separation of vanadium-titanium magnetite in western Liaoning[D]. Shenyang: Northeastern University, 2022.
|
| [7] |
GRIEVES M. Virtually perfect: driving innovative and lean products through product lifecycle management[M]. Florida: Space Coast Press, 2011.
|
| [8] |
SHAFTO M, CONROY M, DOYLE R, et al. Draft modeling, simulation, information technology & processing roadmap[J]. Technology Area, 2010, 11: 1-32.
|
| [9] |
GLAESSGEN E H, STARGEL D S. The digital twin paradigm for future NASA and U. S. air force vehicles[C]. 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, Reston, VA: AIAA, 2012.
|
| [10] |
GRIEVES M. Digital twin: Manufacturing excellence through virtual factory replication[R]. 2014.
|
| [11] |
TAO F, LIU W R, ZHANG M, et al. Five-dimension digital twin model and its ten applications[J]. Computer Integrated Manufacturing Systems, 2019, 25(1): 1-18. (陶飞, 刘蔚然, 张萌, 等. 数字孪生五维模型及十大领域应用[J]. 计算机集成制造系统, 2019, 25(1): 1-18.
TAO F, LIU W R, ZHANG M, et al. Five-dimension digital twin model and its ten applications[J]. Computer Integrated Manufacturing Systems, 2019, 25(1): 1-18.
|
| [12] |
LUO R P, SHENG B Y, HUANG Y Z, et al. Key technologies and development trends of digital twin-based production system simulation software[J]. Computer Integrated Manufacturing Systems, 2023, 29(6): 1965-1982. (罗瑞平, 盛步云, 黄宇哲, 等. 基于数字孪生的生产系统仿真软件关键技术与发展趋势[J]. 计算机集成制造系统, 2023, 29(6): 1965-1982.
LUO R P, SHENG B Y, HUANG Y Z, et al. Key technologies and development trends of digital twin-based production system simulation software[J]. Computer Integrated Manufacturing Systems, 2023, 29(6): 1965-1982.
|
| [13] |
LIN C D, ZHOU T C, ZHANG Y, et al. Research and application of 3D digital twin virtual factory platform for copper smelter[J]. Metallurgical Industry Automation, 2021, 45(4): 12-19. (林成东, 周天驰, 张沅, 等. 铜冶炼厂三维数字孪生417虚拟工厂平台研究与应用[J]. 冶金自动化2021, 45(4): 12-19.
LIN C D, ZHOU T C, ZHANG Y, et al. Research and application of 3D digital twin virtual factory platform for copper smelter[J]. Metallurgical Industry Automation, 2021, 45(4): 12-19.
|
| [14] |
WEN T P, YU J K, JIN E D, et al. A novel electrochemical sensor for phosphorus determination in the high phosphorus liquid iron[J]. Journal of Materials Research and Technology, 2020, 9(3): 3530-3536. doi: 10.1016/j.jmrt.2020.01.090
|
| [15] |
Kang J H, Jung S Y. Sensor for the prognostics and health management of multiple impinging jet nozzles[J]. International Journal of Precision Engineering and Manufacturing-Green Technology, 2022: 1563–1573.
|
| [16] |
HUSSAIN T, HONG J, SEOK J. A hybrid deep learning and machine learning-based approach to classify defects in hot rolled steel strips for smart manufacturing[J]. Computers, Materials & Continua, 2024, 80(2): 2099-2119.
|
| [17] |
LI Y R, YANG C J, ZHANG H W, et al. Discussion on key technologies of digital twin in process industry[J]. Acta Automatica Sinica, 2021, 47(3): 501-514. (李彦瑞, 杨春节, 张瀚文, 等. 流程工业数字孪生关键技术探讨[J]. 自动化学报, 2021, 47(3): 501-514.
LI Y R, YANG C J, ZHANG H W, et al. Discussion on key technologies of digital twin in process industry[J]. Acta Automatica Sinica, 2021, 47(3): 501-514.
|
| [18] |
BELLO L L, STEINER W. A perspective on IEEE time-sensitive networking for industrial communication and automation systems[J]. Proceedings of the IEEE, 2019, 107(6): 1094-1120. doi: 10.1109/JPROC.2019.2905334
|
| [19] |
REIS M J C S, SERÔDIO C. Edge AI for real-time anomaly detection in smart homes[J]. Future Internet, 2025, 17(4): 179. doi: 10.3390/fi17040179
|
| [20] |
LI H Y, LI X, LIU X J, et al. Industrial internet platforms: Applications in BF ironmaking[J]. Ironmaking & Steelmaking, 2022, 49(9): 905-916.
|
| [21] |
LIU S H, SUN W Q, LI W D, et al. Prediction of blast furnace gas generation based on data quality improvement strategy[J]. Journal of Iron and Steel Research International, 2023, 30(5): 864-874. doi: 10.1007/s42243-023-00944-2
|
| [22] |
CAO Q S, BEDEN S, BECKMANN A. A core reference ontology for steelmaking process knowledge modelling and information management[J]. Computers in Industry, 2022, 135: 103574. doi: 10.1016/j.compind.2021.103574
|
| [23] |
XU Y H, YANG C J, LOU S W, et al. Analysis and summary of digital twin in iron and steel industry[J]. Metallurgical Industry Automation, 2023, 47(1): 10-23. (许永泓, 杨春节, 楼嗣威, 等. 钢铁行业数字孪生研究现状分析和综述[J]. 冶金自动化, 2023, 47(1): 10-23.
XU Y H, YANG C J, LOU S W, et al. Analysis and summary of digital twin in iron and steel industry[J]. Metallurgical Industry Automation, 2023, 47(1): 10-23.
|
| [24] |
ZHANG H S, JIANG B Z. Modeling and simulation system of digital factory based on Unity3D[J]. Journal of Henan Science and Technology, 2020, 39(29): 71-74. (张宏帅, 姜宝柱. 基于Unity3D的数字化工厂建模仿真系统[J]. 河南科技, 2020, 39(29): 71-74. doi: 10.3969/j.issn.1003-5168.2020.29.028
ZHANG H S, JIANG B Z. Modeling and simulation system of digital factory based on Unity3D[J]. Journal of Henan Science and Technology, 2020, 39(29): 71-74. doi: 10.3969/j.issn.1003-5168.2020.29.028
|
| [25] |
YILDIZ E, MØLLER C, BILBERG A. Virtual factory: Digital twin based integrated factory simulations[J]. Procedia CIRP, 2020, 96: 216-221.
|
| [26] |
BAMBAUER F, WIRTZ S, SCHERER V, et al. Transient DEM-CFD simulation of solid and fluid flow in a three dimensional blast furnace model[J]. Powder Technology, 2018, 334: 53-64.
|
| [27] |
AGIUS D, MAMUN A A, SIMPSON C A, et al. Predictive crystal plasticity finite element model of fatigue-dwells[J], Computational Materials Science, 2020, 183: 109823.
|
| [28] |
LIU C, WANG S, ZHOU W, et al. Research of integrated scheduling method of steelmaking-continuous casting-hot rolling[J]. Manufacturing Automation, 2015, 37(9): 81-83, 86. (刘超, 王森, 周维, 等. 炼钢-连铸-热轧一体化生产计划排程方法研究[J]. 制造业自动化, 2015, 37(9): 81-83, 86. doi: 10.3969/j.issn.1009-0134.2015.09.022
LIU C, WANG S, ZHOU W, et al. Research of integrated scheduling method of steelmaking-continuous casting-hot rolling[J]. Manufacturing Automation, 2015, 37(9): 81-83, 86. doi: 10.3969/j.issn.1009-0134.2015.09.022
|
| [29] |
ZHANG T, ZHOU F, J. ZHAO J, et al. Deep reinforcement learning for secondary energy scheduling in steel industry[C]. 2020 2nd International Conference on Industrial Artificial Intelligence (AI), Shenyang, China, 2020: 1-5.
|
| [30] |
LIU S H, SUN W Q. Knowledge- and data-driven prediction of blast furnace gas generation and consumption in iron and steel sites[J]. Applied Energy, 2025, 399: 125819.
|
| [31] |
LIN Z W, ZHANG Y Z, CHEN C H, et al. Multi-process digital twin closed-loop machining through shape-feature state update and error propagation knowledge graph[J]. Advanced Engineering Informatics, 2025, 65: 103403. doi: 10.1016/j.aei.2025.103403
|
| [32] |
ZHANG K N, TSANG Y P, LEE C K M, et al. Integrating large language models with explainable fuzzy inference systems for trusty steel defect detection[J]. Pattern Recognition Letters, 2025, 192: 29-35. doi: 10.1016/j.patrec.2025.03.017
|
| [33] |
SUN W Q, WANG Z H, WANG Q. Hybrid event-, mechanism- and data-driven prediction of blast furnace gas generation[J]. Energy, 2020, 199: 117497. doi: 10.1016/j.energy.2020.117497
|
| [34] |
ZHANG X, WANG J C, ZHANG B B, et al. Research on data-driven continuous casting billet quality prediction modeling approach[C]. 2024 4th International Conference on Electronic Information Engineering and Computer Communication (EIECC), Wuhan, China, 2024: 1429-1433.
|
| [35] |
ZAPPULLA M L S, CHO S, KORIC S, et al. Multiphysics modeling of continuous casting of stainless steel[J]. Journal of Materials Processing Technology, 2020, 278: 116469. doi: 10.1016/j.jmatprotec.2019.116469
|
| [36] |
MELOUK S H, FREEMAN N K, MILLER D, et al. Simulation optimization-based decision support tool for steel manufacturing[J]. International Journal of Production Economics, 2013, 141(1): 269-276. doi: 10.1016/j.ijpe.2012.08.001
|
| [37] |
FANG X Q, LIU S H, SUN W Q. Hydraulic modelling and scheduling scheme of blast furnace gas pipeline network[J]. Journal of Northeastern University (Natural Science), 2023, 44(1): 69-75. (房晓晴, 刘书含, 孙文强. 高炉煤气管网水力建模及调度策略[J]. 东北大学学报(自然科学版), 2023, 44(1): 69-75. doi: 10.12068/j.issn.1005-3026.2023.01.010
FANG X Q, LIU S H, SUN W Q. Hydraulic modelling and scheduling scheme of blast furnace gas pipeline network[J]. Journal of Northeastern University (Natural Science), 2023, 44(1): 69-75. doi: 10.12068/j.issn.1005-3026.2023.01.010
|
| [38] |
HONG T Y, CHEN C A, CHIEN C F. Towards sustainable production with resource efficiency: An empirical study of steelmaking continuous casting scheduling[J]. Resources, Conservation and Recycling, 2024, 209: 107806. doi: 10.1016/j.resconrec.2024.107806
|
| [39] |
Industry and Information Technology Department of Hunan Province. The implementation plan for the construction of new materials pilot platform (Base) in Hunan Province[Z]. Raw Materials Industry Division, Industry and Information Technology Department of Hunan Province [2023] No. 22, (2023-01-17) [2025-08-02]. http://gxt.hunan.gov.cn/gxt/xxgk_71033/zcfg/gfxwj/202401/t20240118_32628741.html. (湖南省工业和信息化厅. 湖南省新材料中试平台(基地)建设实施方案[Z]. 湘工信原材料[2023]22号, (2023-01-17) [2025-08-02]. http://gxt.hunan.gov.cn/gxt/xxgk_71033/zcfg/gfxwj/202401/t20240118_32628741.html.
Industry and Information Technology Department of Hunan Province. The implementation plan for the construction of new materials pilot platform (Base) in Hunan Province[Z]. Raw Materials Industry Division, Industry and Information Technology Department of Hunan Province [2023] No. 22, (2023-01-17) [2025-08-02]. http://gxt.hunan.gov.cn/gxt/xxgk_71033/zcfg/gfxwj/202401/t20240118_32628741.html.
|
| [40] |
DONG X S, RAO J T, ZHENG K. Simulation of operation inner profile of blast furnace with smelting vanadium-titanium magnetite[J]. Iron Steel Vanadium Titanium, 2024, 45(3): 121-130, 154. (董晓森, 饶家庭, 郑魁. 冶炼钒钛矿高炉操作炉型计算模拟研究[J]. 钢铁钒钛, 2024, 45(3): 121-130, 154. doi: 10.7513/j.issn.1004-7638.2024.03.017
DONG X S, RAO J T, ZHENG K. Simulation of operation inner profile of blast furnace with smelting vanadium-titanium magnetite[J]. Iron Steel Vanadium Titanium, 2024, 45(3): 121-130, 154. doi: 10.7513/j.issn.1004-7638.2024.03.017
|
| [41] |
YANG Q. The static model of oxygen converter devanadium[D]. Chongqing: Chongqing University, 2002. (杨旗. 转炉提钒静态模型研究[D]. 重庆: 重庆大学, 2002.
YANG Q. The static model of oxygen converter devanadium[D]. Chongqing: Chongqing University, 2002.
|
| [42] |
GAO Z B. Research and application of intelligent production control technology of converter based on digital twin[D]. Jinan: Shandong University, 2024. (高志滨. 基于数字孪生的转炉智能生产控制技术研究与应用[D]. 济南: 山东大学, 2024.
GAO Z B. Research and application of intelligent production control technology of converter based on digital twin[D]. Jinan: Shandong University, 2024.
|
| [43] |
GAO S Z, XUE Y J. Construction practice of digital factory in iron and steel enterprises[J]. Metallurgical Industry Automation, 2022, 46(4): 38-45. (高士中, 薛颖健. 钢铁企业数字化工厂建设实践[J]. 冶金自动化, 2022, 46(4): 38-45. doi: 10.3969/j.issn.1000-7059.2022.04.005
GAO S Z, XUE Y J. Construction practice of digital factory in iron and steel enterprises[J]. Metallurgical Industry Automation, 2022, 46(4): 38-45. doi: 10.3969/j.issn.1000-7059.2022.04.005
|
| [44] |
MA L Y. Research on the impact of digital transformation on the international competitiveness of steel industry enterprises[D]. Lanzhou: Lanzhou University of Finance and Economics, 2025. (马丽云. 数字化转型对钢铁行业企业国际竞争力的影响研究[D]. 兰州: 兰州财经大学, 2025.
MA L Y. Research on the impact of digital transformation on the international competitiveness of steel industry enterprises[D]. Lanzhou: Lanzhou University of Finance and Economics, 2025.
|
| [45] |
ZHANG Q, LIU S, XU H Y, et al. Development and practice of smart energy management and control system in iron and steel works[J]. Iron and Steel, 2019, 54(10): 125-133. (张琦, 刘帅, 徐化岩, 等. 钢铁企业智慧能源管控系统开发与实践[J]. 钢铁, 2019, 54(10): 125-133.
ZHANG Q, LIU S, XU H Y, et al. Development and practice of smart energy management and control system in iron and steel works[J]. Iron and Steel, 2019, 54(10): 125-133.
|
| [46] |
LIU X M, LU M, LIU X, et al. Prediction of coal demand of pellet rotary kilns[J]. Energy for Metallurgical Industry, 2024, 43(2): 30-35. (刘新民, 路明, 刘旭, 等. 球团回转窑煤粉供入量预测[J]. 冶金能源, 2024, 43(2): 30-35. doi: 10.3969/j.issn.1001-1617.2024.02.007
LIU X M, LU M, LIU X, et al. Prediction of coal demand of pellet rotary kilns[J]. Energy for Metallurgical Industry, 2024, 43(2): 30-35. doi: 10.3969/j.issn.1001-1617.2024.02.007
|
| [47] |
BAI P. Prediction technique research on blast furnace gas in iron and steel enterprise[D]. Tianjin: Tianjin University of Technology, 2016. (白鹏. 钢铁企业高炉煤气预测技术研究[D]. 天津: 天津理工大学, 2016.
BAI P. Prediction technique research on blast furnace gas in iron and steel enterprise[D]. Tianjin: Tianjin University of Technology, 2016.
|
| [48] |
LIU S H, SUN W Q, SHI X X, et al. Prediction of gas consumption of a hot blast stove group based on BP neutral network[J]. Chinese Metallurgy, 2022, 32(2): 77-83. (刘书含, 孙文强, 石晓星, 等. 基于BP神经网络的热风炉群煤气消耗量预测[J]. 中国冶金, 2022, 32(2): 77-83.
LIU S H, SUN W Q, SHI X X, et al. Prediction of gas consumption of a hot blast stove group based on BP neutral network[J]. Chinese Metallurgy, 2022, 32(2): 77-83.
|
| [49] |
LIU S H, SUN W Q, FAN T J, et al. A hybrid event-driven and data-driven method for predicting the gas consumption of reheating furnaces[J]. Journal of Materials and Metallurgy, 2021, 20(4): 304-309. (刘书含, 孙文强, 范天骄, 等. 事件和数据融合的加热炉煤气消耗量预测方法[J]. 材料与冶金学报, 2021, 20(4): 304-309.
LIU S H, SUN W Q, FAN T J, et al. A hybrid event-driven and data-driven method for predicting the gas consumption of reheating furnaces[J]. Journal of Materials and Metallurgy, 2021, 20(4): 304-309.
|
| [50] |
KIM J H, YI H S, HAN C. A Novel MILP Model for Plantwide Multiperiod Optimization of Byproduct Gas Supply System in the Iron- and Steel-Making Process[J]. Chemical Engineering Research and Design, 2003, 19(8): 1015-1025.
|
| [51] |
ZHAO L, ZHANG D K. Construction and application of JISCO digital twin platform visualization intelligent system in pipeline network control process[J]. China Steel, 2025(2): 22-25. (赵亮, 张得科. 酒钢数字孪生平台可视化智能系统在管网管控过程中的建设与应用[J]. 中国钢铁业, 2025(2): 22-25.
ZHAO L, ZHANG D K. Construction and application of JISCO digital twin platform visualization intelligent system in pipeline network control process[J]. China Steel, 2025(2): 22-25.
|
| [52] |
LIU X M, SUN W Q, CHEN T T, et al. Energy and environmental performance of iron and steel industry in real-time demand response: A case of hot rolling process[J]. Applied Energy, 2025, 389: 125717. doi: 10.1016/j.apenergy.2025.125717
|
| [53] |
CAI J J, SUN W Q, YUE Q, et al. Energy consumption and efficiency analysis, and CO2 emission assessment of typical iron and steel production routes[J]. Iron and Steel, 2025, 60(7): 59-70. (蔡九菊, 孙文强, 岳强, 等. 典型钢铁流程能耗能效分析及其碳排放评价[J]. 钢铁, 2025, 60(7): 59-70.
CAI J J, SUN W Q, YUE Q, et al. Energy consumption and efficiency analysis, and CO2 emission assessment of typical iron and steel production routes[J]. Iron and Steel, 2025, 60(7): 59-70.
|