| Citation: | ZHAO Haijie, DAN Binbin, LIU Yang, REN Zeyu, DU Liping, ZHOU Chun. A feature selection method for desulfurizer addition prediction based on importance measure[J]. IRON STEEL VANADIUM TITANIUM, 2025, 46(5): 46-53, 64. doi: 10.7513/j.issn.1004-7638.2025.05.005 |
| [1] |
GAO J, CUI L, WANG W, et al. Prediction of sulfur content during steel refining process based on machine learning methods[J]. Steel Research International, 2024, 96(3): 2400662-2400662.
|
| [2] |
GONG H J, LIANG X T, ZHOU Z C, et al. Application of rotary injection desulfurization technology in hot metal pretreatment[J]. Iron Steel Vanadium Titanium, 2020, 41(1): 173-178. (龚洪君, 梁新腾, 周遵传, 等. 旋转喷吹脱硫技术在铁水预处理上的应用研究[J]. 钢铁钒钛, 2020, 41(1): 173-178. doi: 10.7513/j.issn.1004-7638.2020.01.030
GONG H J, LIANG X T, ZHOU Z C, et al. Application of rotary injection desulfurization technology in hot metal pretreatment[J]. Iron Steel Vanadium Titanium, 2020, 41(1): 173-178. doi: 10.7513/j.issn.1004-7638.2020.01.030
|
| [3] |
ADHIWIGUNA IBGS, KARAGÜLMEZ G, KESKIN O, et al. Investigation on applicability of lime as desulfurization agent for molten cast iron[J]. Steel Research International, 2025, 96(1): 2400416.
|
| [4] |
ZHENG Y, ZUO K L. Prediction model of desulfurizer consumption based on BP neural network and regression[J]. Iron Steel Vanadium Titanium, 2017, 38(4): 130-134. (郑毅, 左康林. 基于BP神经网络和回归的脱硫粉剂预报模型[J]. 钢铁钒钛, 2017, 38(4): 130-134. doi: 10.7513/j.issn.1004-7638.2017.04.023
ZHENG Y, ZUO K L. Prediction model of desulfurizer consumption based on BP neural network and regression[J]. Iron Steel Vanadium Titanium, 2017, 38(4): 130-134. doi: 10.7513/j.issn.1004-7638.2017.04.023
|
| [5] |
LIU Z X, DU J Q, LUO J G, et al. Review on stability feature selection[J]. Computer Engineering and Applications, 2025, 61(7): 81-95. (刘梓萱, 杜建强, 罗计根, 等. 稳定性特征选择研究综述[J]. 计算机工程与应用, 2025, 61(7): 81-95. doi: 10.3778/j.issn.1002-8331.2406-0410
LIU Z X, DU J Q, LUO J G, et al. Review on stability feature selection[J]. Computer Engineering and Applications, 2025, 61(7): 81-95. doi: 10.3778/j.issn.1002-8331.2406-0410
|
| [6] |
WANG N, LI X F, NIE L D, et al. High-precision vehicle energy consumption prediction using mutual information feature selection[J]. Journal of Tongji University (Natural Science), 2024, 52(S1): 39-45. (王宁, 李秀峰, 聂辽栋, 等. 基于MI特征选择的车辆能耗高精度预测方法[J]. 同济大学学报(自然科学版), 2024, 52(S1): 39-45. doi: 10.11908/j.issn.0253-374x.24794
WANG N, LI X F, NIE L D, et al. High-precision vehicle energy consumption prediction using mutual information feature selection[J]. Journal of Tongji University (Natural Science), 2024, 52(S1): 39-45. doi: 10.11908/j.issn.0253-374x.24794
|
| [7] |
YAN X M, CHEN C, WANG N, et al. Prediction of desulfurization rate during LF refining process based on random search and AdaBoost model[J]. Journal of Materials and Metallurgy, 2023, 22(5): 430-436, 443. (严旭梅, 陈超, 王楠, 等. 基于随机搜索算法和AdaBoost模型预测LF精炼过程脱硫率[J]. 材料与冶金学报, 2023, 22(5): 430-436, 443.
YAN X M, CHEN C, WANG N, et al. Prediction of desulfurization rate during LF refining process based on random search and AdaBoost model[J]. Journal of Materials and Metallurgy, 2023, 22(5): 430-436, 443.
|
| [8] |
FANG Y F, DAN B B, WU J W, et al. Method for predicting desulfurizer dosage based on ensemble learning[J]. Journal of Wuhan University of Science and Technology, 2024, 47(5): 361-367. (方一飞, 但斌斌, 吴经纬, 等. 基于集成学习的脱硫剂加入量预测方法[J]. 武汉科技大学学报, 2024, 47(5): 361-367. doi: 10.3969/j.issn.1674-3644.2024.05.006
FANG Y F, DAN B B, WU J W, et al. Method for predicting desulfurizer dosage based on ensemble learning[J]. Journal of Wuhan University of Science and Technology, 2024, 47(5): 361-367. doi: 10.3969/j.issn.1674-3644.2024.05.006
|
| [9] |
XU M, LEI H, HE J Y, et al. Predicting the endpoint steel temperature of RH refining using improved XGBoost[J]. Journal of Materials and Metallurgy, 2023, 22(5): 437-443. (徐猛, 雷洪, 何江一, 等. 利用改进XGBoost预测RH精炼终点钢水温度[J]. 材料与冶金学报, 2023, 22(5): 437-443.
XU M, LEI H, HE J Y, et al. Predicting the endpoint steel temperature of RH refining using improved XGBoost[J]. Journal of Materials and Metallurgy, 2023, 22(5): 437-443.
|
| [10] |
GU T Y, GUO J S, LI Z X, et al. Detecting associations based on the multi-variable maximum information coefficient[J]. IEEE Access, 2021, 9: 54912-54922. doi: 10.1109/ACCESS.2021.3070925
|
| [11] |
JU Y, SUN G Y, CHEN Q H, et al. A model combining convolutional neural network and LightGBM algorithm for ultra-short-term wind power forecasting[J]. IEEE Access, 2019: 28309-28318.
|
| [12] |
LI Y Z, DAI W, ZHANG W F. Bearing fault feature selection method based on weighted multidimensional feature fusion[J]. IEEE Access, 2020, 8: 19008-19025. doi: 10.1109/ACCESS.2020.2967537
|
| [13] |
ZHANG S G, ZHOU T, SUN L, et al. v-Support vector regression model based on Gauss-Laplace mixture noise characteristic for wind speed prediction[J]. Entropy, 2019, 21(11): 1056.
|