Volume 46 Issue 5
Oct.  2025
Turn off MathJax
Article Contents
XU Lin, PEI Qunwu, GAO Jing. Numerical simulation of the influence of vertical traveling wave magnetic field on the behavior of molten steel flow and steel slag interface fluctuation in a continuous casting slab mold[J]. IRON STEEL VANADIUM TITANIUM, 2025, 46(5): 54-64. doi: 10.7513/j.issn.1004-7638.2025.05.006
Citation: XU Lin, PEI Qunwu, GAO Jing. Numerical simulation of the influence of vertical traveling wave magnetic field on the behavior of molten steel flow and steel slag interface fluctuation in a continuous casting slab mold[J]. IRON STEEL VANADIUM TITANIUM, 2025, 46(5): 54-64. doi: 10.7513/j.issn.1004-7638.2025.05.006

Numerical simulation of the influence of vertical traveling wave magnetic field on the behavior of molten steel flow and steel slag interface fluctuation in a continuous casting slab mold

doi: 10.7513/j.issn.1004-7638.2025.05.006
More Information
  • Received Date: 2025-08-18
  • Accepted Date: 2025-08-29
  • Rev Recd Date: 2025-08-29
  • Publish Date: 2025-10-30
  • With the trend of green and low carbon development, the contemporary metallurgical industry pursues high-speed and high-efficiency continuous casting to promote sustainable development. In view of this, a vertical traveling wave magnetic field flow control technology is proposed to optimize and control the flow behavior of liquid metal during continuous casting and overcome the existing technical limitations. The proposed flow control technology can provide theoretical basis and technical support for the green and low-carbon transformation of continuous casting process. In the current research, a 1450 mm × 230 mm continuous casting slab mold is taken as a research object. Firstly, a three-dimensional multi-physical field coupling mathematical model is established for describing the electromagnetic continuous casting process. Secondly, the behaviors of molten steel flow and the steel-slag interface within the slab continuous casting mold under conditions of free magnetic field, vertical traveling wave magnetic field, and single ruler horizontal direct current magnetic field are simulated and investigated. Finally, the effects of these two magnetic field forms on the flow control of molten steel in the mold are compared and evaluated. The results indicate that, in the absence of the magnetic field, the maximum height of the steel-slag interface is 22.3 mm. When applied the current via the single ruler horizontal electromagnetic brake is 1350 A, the maximum height decreases to 18.6 mm. In comparison, when the vertical traveling wave magnetic field reducer applies a current of only 600 A, the maximum height of the steel-slag interface is significantly decreased to 13.9 mm. Based on the results, it can be concluded that the vertical traveling wave magnetic field reducer has more significant flow control advantages than the single ruler horizontal electromagnetic brake with lower energy consumption. The directional electromagnetic force generated by the vertical traveling wave magnetic field can effectively suppress the flow of molten steel in the upper recirculation zone of the mold and stabilize the fluctuation of the steel-slag interface.
  • loading
  • [1]
    ZHU M Y. A study of transport phenomena and key technologies for high-speed continuous casting of steel[J]. Iron and Steel, 2021, 56(7): 1-12. (朱苗勇. 高拉速连铸过程传输行为特征及关键技术探析[J]. 钢铁, 2021, 56(7): 1-12.

    ZHU M Y. A study of transport phenomena and key technologies for high-speed continuous casting of steel[J]. Iron and Steel, 2021, 56(7): 1-12.
    [2]
    ZHU M Y. Some considerations for new generation of high-efficiency continuous casting technology development[J]. Iron and Steel, 2019, 54(8): 21-36. (朱苗勇. 新一代高效连铸技术发展思考[J]. 钢铁, 2019, 54(8): 21-36.

    ZHU M Y. Some considerations for new generation of high-efficiency continuous casting technology development[J]. Iron and Steel, 2019, 54(8): 21-36.
    [3]
    ZHU M Y, LOU W T. Numerical simulation of multiphase flow and reaction kinetics during steelmaking process[J]. Journal of Materials and Metallurgy, 2022, 22(1): 1-19. (朱苗勇, 娄文涛. 炼钢过程多相流及其反应动力学数值模拟研究[J]. 材料与冶金学报, 2022, 22(1): 1-19.

    ZHU M Y, LOU W T. Numerical simulation of multiphase flow and reaction kinetics during steelmaking process[J]. Journal of Materials and Metallurgy, 2022, 22(1): 1-19.
    [4]
    REN Z M, LEI Z S, LI C J, et al. New study and development on electromagnetic field technology in metallurgical processes[J]. Acta Metallurgica Sinica, 2020, 56(4): 583-600. (任忠鸣, 雷作胜, 李传军, 等. 电磁冶金技术研究新进展[J]. 金属学报, 2020, 56(4): 583-600. doi: 10.11900/0412.1961.2019.00373

    REN Z M, LEI Z S, LI C J, et al. New study and development on electromagnetic field technology in metallurgical processes[J]. Acta Metallurgica Sinica, 2020, 56(4): 583-600. doi: 10.11900/0412.1961.2019.00373
    [5]
    XU L, PEI Q W, LI Y, et al. Investigation of multiphase transport behaviors in a FTSR mold during electromagnetic continuous casting process[J]. Iron Steel Vanadium Titanium, 2023, 44(4): 125-134. (许琳, 裴群武, 李阳, 等. 电磁连铸过程FTSR结晶器多相传输行为的研究[J]. 钢铁钒钛, 2023, 44(4): 125-134. doi: 10.7513/j.issn.1004-7638.2023.04.019

    XU L, PEI Q W, LI Y, et al. Investigation of multiphase transport behaviors in a FTSR mold during electromagnetic continuous casting process[J]. Iron Steel Vanadium Titanium, 2023, 44(4): 125-134. doi: 10.7513/j.issn.1004-7638.2023.04.019
    [6]
    VAKHRUSHEV A, KARIMI-SIBAKI E, BOHACEK J, et al. Impact of submerged entry nozzle (SEN) immersion depth on meniscus flow in continuous casting mold under electromagnetic brake (EMBr)[J]. Metals, 2023, 13(3): 444-464. doi: 10.3390/met13030444
    [7]
    CUI H N, SUN J K, ZHANG J S, et al. Large eddy simulation of novel EMBr effect on flow pattern in thin slab casting mold with multi-port SEN and ultra-high casting speed[J]. J. Manuf. Process., 2025, 133(3): 448-465.
    [8]
    WEI Z J, WANG T, FENG C, et al. Modeling and simulation of multi-phase and multi-physical fields for slab continuous casting mold under ruler electromagnetic braking[J]. Metall. Mater. Trans. B, 2024, 55(4): 2194-2208. doi: 10.1007/s11663-024-03085-3
    [9]
    LIU Z Q, LI B K, XIAO L J, et al. Modeling progress of high-temperature melt multiphase flow in continuous casting mold[J]. Acta Metallurgica Sinica, 2022, 58(10): 1236-1252. (刘中秋, 李宝宽, 肖丽俊, 等. 连铸结晶器内高温熔体多相流模型化研究进展[J]. 金属学报, 2022, 58(10): 1236-1252. doi: 10.11900/0412.1961.2022.00175

    LIU Z Q, LI B K, XIAO L J, et al. Modeling progress of high-temperature melt multiphase flow in continuous casting mold[J]. Acta Metallurgica Sinica, 2022, 58(10): 1236-1252. doi: 10.11900/0412.1961.2022.00175
    [10]
    LUO S, YANG Y W, WANG W L, et al. Development of electromagnetic flow control technology for high speed casting mold[J]. Journal of Materials and Metallurgy, 2023, 22(1): 1-22. (罗森, 杨宇威, 王卫领, 等. 高拉速连铸结晶器电磁控流技术发展[J]. 材料与冶金学报, 2023, 22(1): 1-22.

    LUO S, YANG Y W, WANG W L, et al. Development of electromagnetic flow control technology for high speed casting mold[J]. Journal of Materials and Metallurgy, 2023, 22(1): 1-22.
    [11]
    VILA A, LINDLBAUER F, ZHANG Z, et al. Simulation and optimization of electromagnetic stirring and braking in slab continuous casting mold[J]. Berg Huettenmaenn Monatsh, 2025, 170(1): 37-44. doi: 10.1007/s00501-024-01539-4
    [12]
    XIAO H, WANG P, ZHU J L, et al. Effect of deceleration mode of traveling wave magnetic field on the liquid steel transportation behavior in the mold of slab casting[J]. Journal of Mechanical Engineering, 2023, 59(18): 219-227. (肖红, 王璞, 朱晶亮, 等. 行波磁场减速模式对板坯连铸结晶器内传输行为的影响[J]. 机械工程学报, 2023, 59(18): 219-227. doi: 10.3901/JME.2023.18.219

    XIAO H, WANG P, ZHU J L, et al. Effect of deceleration mode of traveling wave magnetic field on the liquid steel transportation behavior in the mold of slab casting[J]. Journal of Mechanical Engineering, 2023, 59(18): 219-227. doi: 10.3901/JME.2023.18.219
    [13]
    HE J G, DENG A Y, XU X J, et al. Effect of electromagnetic stirring position on liquid steel flow and liquid level fluctuation in continuous casting mold for wide thick slab[J]. Continuous Casting, 2022, 4: 50-58. (何建国, 邓安元, 许秀杰, 等. 电磁搅拌宽厚板结晶器内钢液流动和液面波动[J]. 连铸, 2022, 4: 50-58.

    HE J G, DENG A Y, XU X J, et al. Effect of electromagnetic stirring position on liquid steel flow and liquid level fluctuation in continuous casting mold for wide thick slab[J]. Continuous Casting, 2022, 4: 50-58.
    [14]
    XIE X X, LUO S, CHEN Y, et al. Effect of electromagnetic stirring on flow, solidification and liquid level fluctuations in slab mold[J]. Continuous Casting, 2025, 44(2): 7-14. (解晓晓, 罗森, 陈耀, 等. 电磁搅拌对板坯结晶器内钢液流动、凝固和液面波动的影响[J]. 连铸, 2025, 44(2): 7-14.

    XIE X X, LUO S, CHEN Y, et al. Effect of electromagnetic stirring on flow, solidification and liquid level fluctuations in slab mold[J]. Continuous Casting, 2025, 44(2): 7-14.
    [15]
    SUN X H, LI B, LU H B, et al. Steel slag interface behavior under multifunction electromagnetic driving in a continuous casting slab mold[J]. Metals, 2019, 9(9): 983-999. doi: 10.3390/met9090983
    [16]
    LI B, LU H B, ZHONG Y B, et al. Numerical simulation for the influence of EMS position on fluid flow and inclusion removal in a slab continuous casting mold[J]. ISIJ Int., 2020, 60(6): 1204-1212. doi: 10.2355/isijinternational.ISIJINT-2019-666
    [17]
    LIU G L, LU H B, LI B, et al. Influence of M-EMS on fluid flow and initial solidification in slab continuous casting[J]. Materials, 2021, 14(13): 3681-3697. doi: 10.3390/ma14133681
    [18]
    XU L, PEI Q W, LI N, et al. Study on the effect of multi area controllable electromagnetic braking on behavior of non-uniform molten steel flow and steel-slag interface in the mold[J]. Iron Steel Vanadium Titanium, 2025, 46(1): 112-123. (许琳, 裴群武, 李楠, 等. 多区域独立可控电磁制动对结晶器内钢液非均匀流动与渣金界面行为影响的研究[J]. 钢铁钒钛, 2025, 46(1): 112-123. doi: 10.7513/j.issn.1004-7638.2025.01.017

    XU L, PEI Q W, LI N, et al. Study on the effect of multi area controllable electromagnetic braking on behavior of non-uniform molten steel flow and steel-slag interface in the mold[J]. Iron Steel Vanadium Titanium, 2025, 46(1): 112-123. doi: 10.7513/j.issn.1004-7638.2025.01.017
    [19]
    XU L, WANG E G, KARCHER C, et al. Numerical simulation of the effects of horizontal and vertical EMBr on jet flow and mold level fluctuation in continuous casting[J]. Metall. Mater. Trans. B, 2018, 49(5): 2779-2793. doi: 10.1007/s11663-018-1342-4
    [20]
    XU L, KARCHER C, WANG E G. Numerical simulation of melt flow, heat transfer and solidification in CSP continuous casting mold with vertical-combined electromagnetic braking[J]. Metall. Mater. Trans. B, 2023, 54(4): 1646-1664. doi: 10.1007/s11663-023-02784-7
    [21]
    XU L, HAN Z F, KARCHER C, et al. Melt flow, heat transfer and solidification in a flexible thin slab continuous casting mold with vertical-combined electromagnetic braking[J]. J. Iron Steel Res. Int., 2024, 31(2): 401-415. doi: 10.1007/s42243-023-01062-9
    [22]
    ZHANG A H, MA D Z, JIAN W W, et al. Numerical simulation of argon blowing behavior inside an independent adjustable combination electromagnetic brake mold[J]. Continuous Casting, 2024, 4: 38-46. (张安昊, 马丹竹, 建伟伟, 等. 独立可调式组合电磁制动结晶器内吹氩行为数值模拟[J]. 连铸, 2024, 4: 38-46.

    ZHANG A H, MA D Z, JIAN W W, et al. Numerical simulation of argon blowing behavior inside an independent adjustable combination electromagnetic brake mold[J]. Continuous Casting, 2024, 4: 38-46.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)  / Tables(1)

    Article Metrics

    Article views (25) PDF downloads(6) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return