| Citation: | LIU Yong, NING Zhen, LIAO Zhehan, ZHU Yanlin, TANG Zheng, FU Qin, DENG Chao. Study on performance of Machine-Learning-Based prediction model for slab reheating furnaces[J]. IRON STEEL VANADIUM TITANIUM, 2025, 46(5): 65-74. doi: 10.7513/j.issn.1004-7638.2025.05.007 |
| [1] |
LU B, TANG K, CHEN D, et al. A novel approach for lean energy operation based on energy apportionment model in reheating furnace[J]. Energy, 2019, 182: 1239-1249. doi: 10.1016/j.energy.2019.06.076
|
| [2] |
LIAO Y X, SHE J H, WU M, et al. Integrated hybrid-PSO and fuzzy-NN decoupling control for temperature of reheating furnace[J]. IEEE transactions on industrial electronics, 2009, 56(7): 2704-2714. doi: 10.1109/TIE.2009.2019753
|
| [3] |
WEI E Z, PENG Y H. Status and prospect of control technology for slab reheatingfurnace(A)[J]. Metallurgical Industry Automation, 2010, 34(3): 5-9. (卫恩泽, 彭燕华. 板坯加热炉控制技术现状及发展(上)[J]. 冶金自动化, 2010, 34(3): 5-9.
WEI E Z, PENG Y H. Status and prospect of control technology for slab reheatingfurnace(A)[J]. Metallurgical Industry Automation, 2010, 34(3): 5-9.
|
| [4] |
ZHANG Q G, LI S Y, CHEN L Q. "Black Box" test and application of mathematical model for walking beam slab reheating furnace[J]. Industrial Furnace, 2012, 34(3): 5-7. (张强国, 李仕一, 陈亮全. 步进梁式板坯加热炉数学模型的“黑匣子”测试与应用[J]. 工业炉, 2012, 34(3): 5-7. doi: 10.3969/j.issn.1001-6988.2012.03.002
ZHANG Q G, LI S Y, CHEN L Q. "Black Box" test and application of mathematical model for walking beam slab reheating furnace[J]. Industrial Furnace, 2012, 34(3): 5-7. doi: 10.3969/j.issn.1001-6988.2012.03.002
|
| [5] |
YANG X J, DUAN Y, HE S F, et al. Prediction of slab unit energy consumption in steel rollingheating furnace based on all influencing factors[J]. Energy for Metallurgical Industry, 2024, 43(3): 14-18. (杨筱静, 段毅, 何胜方, 等. 基于全影响因素的轧钢加热炉板坯单耗预测[J]. 冶金能源, 2024, 43(3): 14-18. doi: 10.3969/j.issn.1001-1617.2024.03.003
YANG X J, DUAN Y, HE S F, et al. Prediction of slab unit energy consumption in steel rollingheating furnace based on all influencing factors[J]. Energy for Metallurgical Industry, 2024, 43(3): 14-18. doi: 10.3969/j.issn.1001-1617.2024.03.003
|
| [6] |
ZHAI N, ZHOU X. Temperature prediction of heating furnace based on deep transfer learning[J]. Sensors, 2020, 20(17): 4676. doi: 10.3390/s20174676
|
| [7] |
CHEN Y W, CHAI T Y. Modelling and prediction for steel billet temperature of heating furnace[J]. International Journal of Advanced Mechatronic Systems, 2010, 2(5-6): 342-349.
|
| [8] |
ZHOU J X, ZHENG R C, HOU H Y, et al. lmproved pelican algorithm for optimizing LSTM basedtemperature prediction of reheating furnace billets[J]. Foreign Electronic Measurement Technology, 2023, 42(5): 174-179. (周建新, 郑日成, 侯宏瑶, 等. 改进鹈鹕算法优化LSTM的加热炉钢坯温度预测[J]. 国外电子测量技术, 2023, 42(5): 174-179.
ZHOU J X, ZHENG R C, HOU H Y, et al. lmproved pelican algorithm for optimizing LSTM basedtemperature prediction of reheating furnace billets[J]. Foreign Electronic Measurement Technology, 2023, 42(5): 174-179.
|
| [9] |
SUN J, YU M H. Temperature neural network prediction model of billet in rollingheating furnace[J]. Foreign Electronic Measurement Technology, 2021, 40(9): 5. (孙洁, 于孟晗. 轧钢加热炉钢坯温度神经网络预测模型[J]. 国外电子测量技术, 2021, 40(9): 5.
SUN J, YU M H. Temperature neural network prediction model of billet in rollingheating furnace[J]. Foreign Electronic Measurement Technology, 2021, 40(9): 5.
|
| [10] |
YU H, GONG J, WANG G, et al. A hybrid model for billet tapping temperature prediction and optimization in reheating furnace[J]. IEEE Transactions on Industrial Informatics, 2022, 19(8): 8703-8712.
|
| [11] |
SHI Q, TANG J, CHU M S. Key issues and progress of industrial big data-based intelligent blast furnace ironmaking technology[J]. International Journal of Minerals, Metallurgy and Materials, 2023, 30(9): 1651-1666. doi: 10.1007/s12613-023-2636-3
|
| [12] |
RESHEF D N, RESHEF Y A, FINUCANE H K, et al. Detecting novel associations in large data sets[J]. Science, 2011, 334(6062): 1518-1524. doi: 10.1126/science.1205438
|
| [13] |
RAMRAJ S, UZIR N, SUNIL R, et al. Experimenting XGBoost algorithm for prediction and classification of different datasets[J]. International Journal of Control Theory and Applications, 2016, 9(40): 651-662.
|
| [14] |
XIE C L. Wind-induced acceleration prediction of cable-stayed bridges based on LST model[D]. Guang Zhou: Guangzhou University, 2023. (谢诚朗. 基于LSTM模型的斜拉桥风致加速度预测[D]. 广州: 广州大学, 2023.
XIE C L. Wind-induced acceleration prediction of cable-stayed bridges based on LST model[D]. Guang Zhou: Guangzhou University, 2023.
|