| Citation: | WANG Yinghu, CHENG Limei, WANG Jianqiang, WANG E'nuo, SONG Lingxi, SHENG Zhendong. ANN-Driven modeling of high-temperature flow behavior in P650 for nonmagnetic drilling collars[J]. IRON STEEL VANADIUM TITANIUM, 2025, 46(5): 75-84. doi: 10.7513/j.issn.1004-7638.2025.05.008 |
| [1] |
ZHANG S X, CUI Y, QU H P, et al. Precipitation mechanical of 0Cr19Mn21Ni2N austenitic stainless steel for non-magnetic drill collar during isothermal aging at 800 ℃[J]. Heat Treatment of Metals, 2016, 41(9): 52-56. (张世霄, 崔岩, 屈华鹏, 等. 无磁钻铤用0Cr19Mn21Ni2N奥氏体不锈800 ℃等温时效析出机制[J]. 金属热处理, 2016, 41(9): 52-56.
ZHANG S X, CUI Y, QU H P, et al. Precipitation mechanical of 0Cr19Mn21Ni2N austenitic stainless steel for non-magnetic drill collar during isothermal aging at 800 ℃[J]. Heat Treatment of Metals, 2016, 41(9): 52-56.
|
| [2] |
CORDEA J N, SHETH H V, JASPER J C. Development of an improved austenitic drilling collar alloy[J]. Material Performance, 1987(23): 50-54.
|
| [3] |
ZHANG S X. Research on processing technology of high nitrogen austenitic stainless steels for offshore oil gas drilling application[D]. Tangshan: North China University of Science and Technology, 2016. (张世霄. 海洋油气钻采高氮奥氏体不锈钢加工工艺研究[D]. 唐山: 华北理工大学, 2016.
ZHANG S X. Research on processing technology of high nitrogen austenitic stainless steels for offshore oil gas drilling application[D]. Tangshan: North China University of Science and Technology, 2016.
|
| [4] |
AO Y, ZHOU C D. Thermal deformation behavior of P550 austenitic stainless steel[J]. Shanghai Metals, 2016, 38(5): 22-26. (敖影, 周灿栋. 0Cr19Mn21Ni2N奥氏体不锈钢的热变形行为研究[J]. 上海金属, 2016, 38(5): 22-26. doi: 10.3969/j.issn.1001-7208.2016.05.005
AO Y, ZHOU C D. Thermal deformation behavior of P550 austenitic stainless steel[J]. Shanghai Metals, 2016, 38(5): 22-26. doi: 10.3969/j.issn.1001-7208.2016.05.005
|
| [5] |
QU H P, LANG Y P, CHEN H T. Research and development on high nitrogen stainless steels used for non-magnetic drilling collar[J]. Hot Working Technology, 2014, 43(24): 14-17. (屈华鹏, 郎宇平, 陈海涛. 无磁钻铤用高氮不锈钢的研究和发展[J]. 热加工工艺, 2014, 43(24): 14-17.
QU H P, LANG Y P, CHEN H T. Research and development on high nitrogen stainless steels used for non-magnetic drilling collar[J]. Hot Working Technology, 2014, 43(24): 14-17.
|
| [6] |
LÜ S L, LUO F Q, ZHOU J, et al. Fracture reason analysis on drill collar[J]. Physical Testing and Chemical Analysis, 2009, 45(5): 309-311. (吕栓录, 骆发前, 周杰, 等. 钻铤断裂原因分析[J]. 理化检验, 2009, 45(5): 309-311.
LÜ S L, LUO F Q, ZHOU J, et al. Fracture reason analysis on drill collar[J]. Physical Testing and Chemical Analysis, 2009, 45(5): 309-311.
|
| [7] |
LÜ S L, ZHANG H, XU F, et al. Gause analysis of oil drill collar fracture[J]. Material for Mechanical Engineering, 2010, 36(6): 80-82. (吕栓录, 张宏, 许峰, 等. 石油钻铤断裂原因分析[J]. 机械工程材料, 2010, 36(6): 80-82.
LÜ S L, ZHANG H, XU F, et al. Gause analysis of oil drill collar fracture[J]. Material for Mechanical Engineering, 2010, 36(6): 80-82.
|
| [8] |
SHI F, CUI W F, WANG L J, et al. Advance in the research of high-nitrogen austenitic stainless steels[J]. Shanghai Metals, 2006, 28(5): 45-50. (石锋, 崔文芳, 王立军, 等. 高氮奥氏体不锈钢研究进展[J]. 上海金属, 2006, 28(5): 45-50. doi: 10.3969/j.issn.1001-7208.2006.05.011
SHI F, CUI W F, WANG L J, et al. Advance in the research of high-nitrogen austenitic stainless steels[J]. Shanghai Metals, 2006, 28(5): 45-50. doi: 10.3969/j.issn.1001-7208.2006.05.011
|
| [9] |
WANG Y H, ZHENG H B, SONG L X, et al. High temperature plastic deformation behavior of 0Cr19Mn21Ni2N high nitrogen steel for nonmagnetic drilling collar[J]. Heat Treatment of Metals, 2022, 47(1): 113-119. (王英虎, 郑淮北, 宋令玺, 等. 无磁钻铤用0Cr19Mn21Ni2N高氮钢的高温塑性变形行为[J]. 金属热处理, 2022, 47(1): 113-119.
WANG Y H, ZHENG H B, SONG L X, et al. High temperature plastic deformation behavior of 0Cr19Mn21Ni2N high nitrogen steel for nonmagnetic drilling collar[J]. Heat Treatment of Metals, 2022, 47(1): 113-119.
|
| [10] |
LI Y F, WANG Z H, ZHANG L Y, et al. Arrhenius-type constitutive model and dynamic recrystallization behavior of V-5Cr-5Ti alloy during hot compression[J]. Transactions of Nonferrous Metals Society of China, 2015, 25(6): 1889-1900. doi: 10.1016/S1003-6326(15)63796-7
|
| [11] |
GAO X J, LIU X, LUO J, et al. Arrhenius constitutive model for hot deformation of DP1180 steel[J]. Journal of Netshape Forming Engineering, 2024, 16(11): 108-116. (高兴健, 刘鑫, 罗健, 等. DP1180 钢的热变形Arrhenius本构模型[J]. 精密成形工程, 2024, 16(11): 108-116.
GAO X J, LIU X, LUO J, et al. Arrhenius constitutive model for hot deformation of DP1180 steel[J]. Journal of Netshape Forming Engineering, 2024, 16(11): 108-116.
|
| [12] |
XU L W, LI H B, JIANG Z H, et al. Hot deformation behavior of P550 steels for nonmagnetic drilling collars[J]. Steel Research International, 2020, 91(8): 1-11.
|
| [13] |
GUO W. Study on thermal deformation behavior and microstructure evolution of P550 high nitrogen austenitic stainless steel[J]. Materials Research Express, 2023, 10(6).
|
| [14] |
REDDY N S, LEE Y H, KIM J H, et al. High temperature deformation behavior of Ti-6Al-4V alloy with and equiaxed microstructure: a neural networks analysis[J]. Met Mater Int, 2008, 14(2): 213-221. doi: 10.3365/met.mat.2008.04.213
|
| [15] |
AHMADI H, ASHTIANI H R R, HEIDARI M, A comparative study of phenomenological, physically-based and artificial neural network models to predict the hot flow behavior of API 5CT-L80 steel[J]. Materials Today Communications, 2020, 25, 101528.
|
| [16] |
JI G L, LI F G, LI Q H, et al. Prediction of the hot deformation behavior for Aermet100 steel using an artificial neural network[J]. Computational Materials Science, 2010, 48(7): 626-632.
|
| [17] |
YANG J C, GAO F B, REN J L. Research on plastic deformation behavior of 00Cr17Mn6Ni5N at high temperature[J]. Hot Working Technology, 2014, 43(16): 102-104. (杨吉春, 高福彬, 任金亮. 00Cr17Mn6Ni5N的高温塑性变形行为研究[J]. 热加工工艺, 2014, 43(16): 102-104.
YANG J C, GAO F B, REN J L. Research on plastic deformation behavior of 00Cr17Mn6Ni5N at high temperature[J]. Hot Working Technology, 2014, 43(16): 102-104.
|
| [18] |
YU X P, DONG H B. Numerical simulation of austenite recrystallization process in 40Cr steel[J]. Special Casting & Nonferrous Alloys, 2015, 35(1): 26-29. (余新平, 董洪波. 40Cr钢奥氏体动态再结晶过程数值模拟[J]. 特种铸造及有色合金, 2015, 35(1): 26-29.
YU X P, DONG H B. Numerical simulation of austenite recrystallization process in 40Cr steel[J]. Special Casting & Nonferrous Alloys, 2015, 35(1): 26-29.
|
| [19] |
WEI H L, PAN H B, ZHOU H W. Physical and apparent arrhenius constitutive models of a Nb–Ti microalloyed C–Mn–Al high strength steel: A comparative study[J]. Transactions of the Indian Institute of Metals, 2022, 75(2): 327-336. doi: 10.1007/s12666-021-02414-3
|
| [20] |
ZENER C, HOLLOMON J H. Effect of strain rate upon plastic flow of steel[J]. Journal of Applied Physics, 1944, 15(1): 22-32. doi: 10.1063/1.1707363
|
| [21] |
LONG S, XIA Y, WANG P, et al. Constitutive modelling, dynamic globularization behavior and processing map for Ti-6Cr-5Mo-5V-4Al alloy during hot deformation[J]. Journal of Alloys and Compounds, 2019, 796(5): 65-76.
|