| Citation: | ZHANG Jiale, ZHAO Jianping, CHANG Le. Study on the stress-strain behavior of CoCrFeNiCux high-entropy alloy under biaxial tensile state[J]. IRON STEEL VANADIUM TITANIUM, 2025, 46(5): 85-92. doi: 10.7513/j.issn.1004-7638.2025.05.009 |
| [1] |
YEH J W, CHEN S K, LIN S J, et al. Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes[J]. Advanced Engineering Materials, 2004, 6(5): 299-303. doi: 10.1002/adem.200300567
|
| [2] |
CANTOR B, CHANG I T H, KNIGHT P, et al. Microstructural development in equiatomic multicomponent alloys[J]. Materials Science and Engineering: A, 2004, 375: 213-218.
|
| [3] |
MIRACLE D B, SENKOV O N. A critical review of high entropy alloys and related concepts[J]. Acta Materialia, 2017, 122: 448-511. doi: 10.1016/j.actamat.2016.08.081
|
| [4] |
MURTY B S, YEH J W, RANGANATHAN S, et al. High-entropy alloys[M]. Elsevier, 2019.
|
| [5] |
YANG Y F, HU F, XIA T, et al. High entropy alloys: a review of preparation techniques, properties and industry applications[J]. Journal of Alloys and Compounds, 2024: 177691.
|
| [6] |
GEORE E P, RAABE D, RITCHIE R O. High-entropy alloys[J]. Nature Reviews Materials, 2019, 4(8): 515-534. doi: 10.1038/s41578-019-0121-4
|
| [7] |
LI C W, ZHANG Y. Effect of copper content on the microstructure and properties of CoCrFeNi high-entropy alloy[J]. Journal of Precision Forming Engineering, 2022, 14(12): 1-9. (李昌伟, 张勇. 铜含量对CoCrFeNi高熵合金组织结构和性能的影响[J]. 精密成形工程, 2022, 14(12): 1-9. doi: 10.3969/j.issn.1674-6457.2022.12.001
LI C W, ZHANG Y. Effect of copper content on the microstructure and properties of CoCrFeNi high-entropy alloy[J]. Journal of Precision Forming Engineering, 2022, 14(12): 1-9. doi: 10.3969/j.issn.1674-6457.2022.12.001
|
| [8] |
FARKAS D, CARO A. Model interatomic potentials and lattice strain in a high-entropy alloy[J]. Journal of Materials Research, 2018, 33(19): 3218-3225. doi: 10.1557/jmr.2018.245
|
| [9] |
CAO Y, LIU J F, ZHOU S G, et al. Mechanical properties and microstructural evolution of FeNiCrCoCux high-entropy alloys: A molecular dynamics simulation[J]. Solid State Communications, 2023, 359: 115011. doi: 10.1016/j.ssc.2022.115011
|
| [10] |
HANNON A, TIERNAN P. A review of planar biaxial tensile test systems for sheet metal[J]. Journal of Materials Processing Technology, 2008, 198(1-3): 1-13. doi: 10.1016/j.jmatprotec.2007.10.015
|
| [11] |
SUN X L, FAN S M, PENG M J, et al. Classical molecular dynamics simulation of atomic structure transitions in FeSiCuMgAl high-entropy alloys under biaxial stretching[J]. Materials Today Communications, 2024, 40: 109716. doi: 10.1016/j.mtcomm.2024.109716
|
| [12] |
MENG J K, LIU L, JIANG J T, et al. The role of biaxial stress ratio on the mechanical behavior and deformation mechanisms in HCP α-Ti[J]. Materials Science and Engineering: A, 2023, 862: 144452. doi: 10.1016/j.msea.2022.144452
|
| [13] |
HU Y X, SHUANG S Y, WANG B, et al. Study on the temperature-dependent tensile behavior of nanocrystalline CrMnFeCoNi high-entropy alloy [J]. Journal of Solid Mechanics, 2020, 41(2): 109-117. (胡远啸, 双思垚, 王冰, 等. CrMnFeCoNi高熵合金纳米晶温度相关的拉伸行为研究[J]. 固体力学学报, 2020, 41(2): 109-117.
HU Y X, SHUANG S Y, WANG B, et al. Study on the temperature-dependent tensile behavior of nanocrystalline CrMnFeCoNi high-entropy alloy [J]. Journal of Solid Mechanics, 2020, 41(2): 109-117.
|
| [14] |
STUKOWSKI A. Structure identification methods for atomistic simulations of crystalline materials[J]. Modelling and Simulation in Materials Science and Engineering, 2012, 20(4): 045021. doi: 10.1088/0965-0393/20/4/045021
|
| [15] |
STUKOWSKI A. Visualization and analysis of atomistic simulation data with OVITO–the Open Visualization Tool[J]. Modelling and Simulation in Materials Science and Engineering, 2009, 18(1): 015012.
|
| [16] |
STUKOWSKI A, BULATOV V V, ARSENLIS A. Automated identification and indexing of dislocations in crystal interfaces[J]. Modelling and Simulation in Materials Science and Engineering, 2012, 20(8): 085007. doi: 10.1088/0965-0393/20/8/085007
|
| [17] |
LIU H W. Mechanics of materials [M]. Beijing: Higher Education Press, December 1982. (刘鸿文. 材料力学[M]. 北京: 高等教育出版社, 1982.12.
LIU H W. Mechanics of materials [M]. Beijing: Higher Education Press, December 1982.
|
| [18] |
ZHENG H T, CHEN R R, QIN G, et al. Microstructure evolution, Cu segregation and tensile properties of CoCrFeNiCu high entropy alloy during directional solidification[J]. Journal of Materials Science & Technology, 2020, 38: 19-27.
|
| [19] |
WANG Q, GUO J H, CHEN W Q, et al. Molecular dynamics simulations of tensile properties for FeNiCrCoCu high-entropy alloy[J]. Materials Today Communications, 2024, 38: 108187. doi: 10.1016/j.mtcomm.2024.108187
|
| [20] |
WEISS J, SAVAGE D J, VOGEL S C, et al. Evolution of microstructure and strength of a high entropy alloy undergoing the strain-induced martensitic transformation[J]. Materials Science and Engineering: A, 2023, 887: 145754. doi: 10.1016/j.msea.2023.145754
|
| [21] |
ZHANG R, QI W J, ZHANG S. Molecular dynamics simulation of tensile mechanical properties of AlxCoCrFeNi[J]. Iron, Steel, Vanadium and Titanium, 2022, 43(6): 173-179. (张荣, 祁文军, 张爽. AlxCoCrFeNi拉伸力学性能的分子动力学模拟[J]. 钢铁钒钛, 2022, 43(6): 173-179. doi: 10.7513/j.issn.1004-7638.2022.06.026
ZHANG R, QI W J, ZHANG S. Molecular dynamics simulation of tensile mechanical properties of AlxCoCrFeNi[J]. Iron, Steel, Vanadium and Titanium, 2022, 43(6): 173-179. doi: 10.7513/j.issn.1004-7638.2022.06.026
|
| [22] |
LI J, FANG Q H, LIU B, et al. Mechanical behaviors of AlCrFeCuNi high-entropy alloys under uniaxial tension via molecular dynamics simulation[J]. RSC Advances, 2016, 6(80): 76409-76419. doi: 10.1039/C6RA16503F
|
| [23] |
LI H Y, GAO L Q, QI L, et al. Biaxial tensile behavior of CoCrFeNi high-entropy alloy under dynamic and proportional loadings[J]. Chinese Journal of Aeronautics, 2024.
|
| [24] |
LIU X R, CHANG L, MA T H, et al. Molecular dynamics simulation of tension and compression deformation behavior in CoCrCuFeNi high-entropy alloy: Effects of temperature and orientation[J]. Materials Today Communications, 2023, 36: 106523. doi: 10.1016/j.mtcomm.2023.106523
|
| [25] |
ZHANG L M, MA S G, LI Z Q, et al. Molecular dynamics simulation of the mechanical properties of AlxCoCrFeNi high-entropy alloy [J]. Chinese Journal of High Pressure Physics, 2021, 35(5). (张路明, 马胜国, 李志强, 等. AlxCoCrFeNi高熵合金力学性能的分子动力学模拟[J]. 高压物理学报, 2021, 35(5).
ZHANG L M, MA S G, LI Z Q, et al. Molecular dynamics simulation of the mechanical properties of AlxCoCrFeNi high-entropy alloy [J]. Chinese Journal of High Pressure Physics, 2021, 35(5).
|
| [26] |
HOGE K G. Influence of strain rate on mechanical properties of 6061-T6 aluminum under uniaxial and biaxial states of stress: Author presents special technique for determining mechanical properties of materials under dynamic tensile loads[J]. Experimental Mechanics, 1966, 6: 204-211. doi: 10.1007/BF02326150
|
| [27] |
LI M C, JIANG M Q, YANG S J, et al. Effect of strain rate on yielding strength of a Zr-based bulk metallic glass[J]. Materials Science and Engineering: A, 2017, 680: 21-26. doi: 10.1016/j.msea.2016.10.081
|