| Citation: | ZHENG Wanjie, PANG Houjun, ZENG Wu, WANG Yunfeng, XU Guang, TIAN Junyu. Study on the effect of rolling process on the deformation resistance of low carbon micro-Nb steel and its model[J]. IRON STEEL VANADIUM TITANIUM, 2025, 46(5): 93-101. doi: 10.7513/j.issn.1004-7638.2025.05.010 |
| [1] |
BAN H Y, ZHOU G H, YU H Q, et al. Mechanical properties and modelling of superior high-performance steel at elevated temperatures[J]. Journal of Constructional Steel Research, 2021, 176: 106407. doi: 10.1016/j.jcsr.2020.106407
|
| [2] |
YANG W J. Eeffect of tensile rate on tensile test results of 05Cr17Ni4Cu4Nb Steel[J]. Heat Treatment, 2024, 39(2): 15-18, 22. (杨旺久. 拉伸速率对05Cr17Ni4Cu4Nb钢拉伸试验结果的影响[J]. 热处理, 2024, 39(2): 15-18, 22. doi: 10.3969/j.issn.1008-1690.2024.02.003
YANG W J. Eeffect of tensile rate on tensile test results of 05Cr17Ni4Cu4Nb Steel[J]. Heat Treatment, 2024, 39(2): 15-18, 22. doi: 10.3969/j.issn.1008-1690.2024.02.003
|
| [3] |
WANG G D. Status and prospects of research and development of key common technologies for high-quality heavy and medium plate production[J]. Steel Rolling, 019, 36(1): 1-8, 30. (王国栋. 高质量中厚板生产关键共性技术研发现状和前景[J]. 轧钢, 2019, 36(01): 1-8, 30.
WANG G D. Status and prospects of research and development of key common technologies for high-quality heavy and medium plate production[J]. Steel Rolling, 019, 36(1): 1-8, 30.
|
| [4] |
CHEN G X, LU X Y, YAN J, et al. High-temperature deformation behavior of M50 steel[J]. Metals, 2022, 12(4): 541. doi: 10.3390/met12040541
|
| [5] |
SONG S Y, TIAN J Y, FAN L, et al. Study on dynamic and static CCT curves of steel Q460 for high performance building structures[J]. Journal of Wuhan University of Science and Technology, 2021, 44(6): 406-414. (宋思颖, 田俊羽, 樊雷, 等. 高性能建筑结构用钢Q460的动态和静态CCT曲线研究[J]. 武汉科技大学学报, 2021, 44(6): 406-414. doi: 10.3969/j.issn.1674-3644.2021.06.002
SONG S Y, TIAN J Y, FAN L, et al. Study on dynamic and static CCT curves of steel Q460 for high performance building structures[J]. Journal of Wuhan University of Science and Technology, 2021, 44(6): 406-414. doi: 10.3969/j.issn.1674-3644.2021.06.002
|
| [6] |
ZOU J H, TIAN J Y, LI X, et al. Study on dynamic CCT curve and cooling technology of steel containing low carbon niobium building structure[J]. Journal of Wuhan University of Science and Technology, 2024, 47(5): 329-338. (邹佳辉, 田俊羽, 李显, 等. 低碳含铌建筑结构用钢动态CCT曲线及冷却工艺研究[J]. 武汉科技大学学报, 2024, 47(5): 329-338. doi: 10.3969/j.issn.1674-3644.2024.05.002
ZOU J H, TIAN J Y, LI X, et al. Study on dynamic CCT curve and cooling technology of steel containing low carbon niobium building structure[J]. Journal of Wuhan University of Science and Technology, 2024, 47(5): 329-338. doi: 10.3969/j.issn.1674-3644.2024.05.002
|
| [7] |
ZHANG X P P, WU X D, ZHOU S R. Dynamic recrystallization and subdynamic recrystallization behavior of 18CrNiMo7-6 gear steel and their dynamic models[J]. Materials for Mechanical Engineering, 2024, 48(11): 29-36. (张肖佩佩, 吴晓东, 周少荣. 18CrNiMo7-6齿轮钢的动态再结晶和亚动态再结晶行为及其动力学模型[J]. 机械工程材料, 2024, 48(11): 29-36. doi: 10.11973/jxgccl230552
ZHANG X P P, WU X D, ZHOU S R. Dynamic recrystallization and subdynamic recrystallization behavior of 18CrNiMo7-6 gear steel and their dynamic models[J]. Materials for Mechanical Engineering, 2024, 48(11): 29-36. doi: 10.11973/jxgccl230552
|
| [8] |
CHEN L H, LI C R, WEI J J. Effect of thermal deformation and Nb element action on the organization and performance of steel[J]. Materials Research Express, 2022, 9(5): 056518. doi: 10.1088/2053-1591/ac703b
|
| [9] |
SUN J H, GU H, ZHANG J, et al. Ti6Al4V-0.72H on the establishment of flow behavior and the analysis of hot processing maps[J]. Crystals, 2024, 14(4): 345. doi: 10.3390/cryst14040345
|
| [10] |
SHEN W F, ZHANG C, ZHANG L W, et al. Experimental study on the hot deformation characterization of low-carbon Nb-V-Ti microalloyed steel[J]. Journal of Materials Engineering and Performance, 2018, 27: 4616-4624. doi: 10.1007/s11665-018-3594-1
|
| [11] |
SUN J Q, DAI H, ZHANG Y C. Research on mathematical model of thermal deformation resistance of X80 pipeline steel[J]. Materials & Design, 2011, 32(3): 1612-1616.
|
| [12] |
LIU J, MAO B X, DUANMU Y C, et al. An investigation on deformation resistance modeling for AH36 hull structural steel[J]. Modern Transportation and Metallurgical Materials, 2025, 5(1): 68-75, 84. (刘健, 毛柄勋, 端木怡超, 等. AH36船板钢变形抗力模型研究[J]. 现代交通与冶金材料, 2025, 5(1): 68-75, 84. doi: 10.3969/j.issn.2097-017X.2025.01.011
LIU J, MAO B X, DUANMU Y C, et al. An investigation on deformation resistance modeling for AH36 hull structural steel[J]. Modern Transportation and Metallurgical Materials, 2025, 5(1): 68-75, 84. doi: 10.3969/j.issn.2097-017X.2025.01.011
|
| [13] |
YIN B L, SAHAL A, CUI X Y, et al. Prediction model of deformation resistance of strip steel during hot continous rolling process[J]. Journal of Plasticity Engineering, 2024, 31(10): 159-166. (尹宝良, SAHAL A, 崔熙颖, 等. 热连轧过程大梁钢变形抗力预报模型[J]. 塑性工程学报, 2024, 31(10): 159-166.
YIN B L, SAHAL A, CUI X Y, et al. Prediction model of deformation resistance of strip steel during hot continous rolling process[J]. Journal of Plasticity Engineering, 2024, 31(10): 159-166.
|
| [14] |
LI C, CHEN C Y, HUANG K, et al. Hot deformation behavior and microstructure evolution of Al-7.92Zn-1.64Mg-2.00Cu Alloy[J]. Metals, 2024, 14(2): 176. doi: 10.3390/met14020176
|
| [15] |
LIU K Z, HUANG L, SU Y, et al. Hot deformation behavior and comparison of three rheological stress models on AerMet100 ultra-high strength steel[J]. Forging and Stamping Technology, 2024, 49(10): 209-220. (刘可卓, 黄亮, 苏阳, 等. AerMet100超高强钢热变形行为及3种流变应力模型对比[J]. 锻压技术, 2024, 49(10): 209-220.
LIU K Z, HUANG L, SU Y, et al. Hot deformation behavior and comparison of three rheological stress models on AerMet100 ultra-high strength steel[J]. Forging and Stamping Technology, 2024, 49(10): 209-220.
|
| [16] |
FENG Y L, LI J, AI L Q, et al. Deformation resistance of Fe-Mn-V-N alloy under different deformation processes[J]. Rare Metals, 2017, 36: 833-839. doi: 10.1007/s12598-015-0678-z
|
| [17] |
ZHAO H T, PALMIERE E J. Influence of cooling rate on the grain-refining effect of austenite deformation in a HSLA steel[J]. Materials Characterization, 2019, 158: 109990. doi: 10.1016/j.matchar.2019.109990
|
| [18] |
ZHAO H T, PALMIERE E J. Effect of austenite grain size on acicular ferrite transformation in a HSLA steel[J]. Materials Characterization, 2018, 145: 479-489. doi: 10.1016/j.matchar.2018.09.013
|
| [19] |
MANDAL S, BHOWMIK N, TEWARY N K, et al. Austenite grain growth and effect of austenite grain size on bainitic transformation[J]. Materials Science and Technology, 2022, 38(7): 409-418. doi: 10.1080/02670836.2022.2045547
|
| [20] |
WANG L F, HE P, HAN L, et al. Stress-strain analysis and yield strength prediction of austenite deformation of a medium carbon alloy steel[J]. Materials Science and Technology, 2023, 31(1): 43-48. (王礼凡, 何平, 韩理, 等. 中碳合金钢奥氏体变形应力应变分析及屈服强度的预测[J]. 材料科学与工艺, 2023, 31(1): 43-48. doi: 10.11951/j.issn.1005-0299.20220040
WANG L F, HE P, HAN L, et al. Stress-strain analysis and yield strength prediction of austenite deformation of a medium carbon alloy steel[J]. Materials Science and Technology, 2023, 31(1): 43-48. doi: 10.11951/j.issn.1005-0299.20220040
|
| [21] |
ZHOU J H, GUAN K Z. Resistance to plastic deformation of metals[M]. Beijing: China Machine PRESS, 1989: 60-63. (周纪华, 管克智. 金属塑性变形阻力[M]. 北京: 机械工业出版社, 1989: 60-63.
ZHOU J H, GUAN K Z. Resistance to plastic deformation of metals[M]. Beijing: China Machine PRESS, 1989: 60-63.
|