| Citation: | ZONG Nanfu, QI Zhen, JING Tao, SHEN Houfa, JEAN-CHRISTOPHE Gebelin, MARYAM Khaksar Ghalati. Deep applications of machine learning in cold strip rolling industry: opportunities and challenges[J]. IRON STEEL VANADIUM TITANIUM, 2025, 46(5): 102-110. doi: 10.7513/j.issn.1004-7638.2025.05.011 |
| [1] |
TAKAMI K M, MAHMOUDI J, DAHLQUIST E, et al. Multivariable data analysis of a cold rolling control system to minimise defects[J]. International Journal of Advanced Manufacturing Technology, 2011, 54: 553-565. doi: 10.1007/s00170-010-2946-2
|
| [2] |
FLORIANO B R, VARGAS A N, ISHIHARA J Y, et al. Neural-network-based model predictive control for consensus of nonlinear systems[J]. Engineering Applications of Artificial Intelligence, 2022, 116: 105327. doi: 10.1016/j.engappai.2022.105327
|
| [3] |
ZONG N F, JING T, GEBELIN J C. Machine learning techniques for the comprehensive analysis of the continuous casting processes: Slab defects[J]. Ironmaking & Steelmaking, 2025.
|
| [4] |
PITTNER J, SIMAAN M A. State-dependent riccati equation approach for optimal control of a tandem cold metal rolling process[J]. IEEE Transactions on Industry Applications, 2006, 42(3): 836-843.
|
| [5] |
ZONG N F, LIU H L, LI S, et al. Application status and prospects of machine learning in high-efficiency continuous casting manufacturing[J]. Angang Technology, 2025, 450(6): 23-33. (宗男夫, 刘宏亮, 李爽, 等. 机器学习在高效连铸制造中的应用现状及展望[J]. 鞍钢技术, 2025, 450(6): 23-33.
ZONG N F, LIU H L, LI S, et al. Application status and prospects of machine learning in high-efficiency continuous casting manufacturing[J]. Angang Technology, 2025, 450(6): 23-33.
|
| [6] |
GEURTS P, ERNST D, WEHENKEL L, et al. Extremely randomized trees[J]. Machine learning, 2006, 63: 3-42. doi: 10.1007/s10994-006-6226-1
|
| [7] |
SUTHAHARAN S. Machine learning models algorithms for big data classification: thinking with examples for effective learning, [M]. Berlin: Springer, 2016.
|
| [8] |
CHEN C, HUI Q, PEI Q, et al. CRML: A convolution regression model with machine learning for hydrology forecasting[J]. IEEE Access, 2019, 7: 133839-133849. doi: 10.1109/ACCESS.2019.2941234
|
| [9] |
ALLOGHANI M, Al-JUMEILY D, MUSTAFINA J, et al. A systematic review on supervised and unsupervised machine learning algorithms for data science[J]. Supervised Unsupervised Learn Data Sci. 2020, 3-21.
|
| [10] |
KAMESHWARAN K, MALARVIZHI K. Survey on clustering techniques in data mining[J]. Journal of Computer Science and Technology, 2014, 5(2): 2272-2276.
|
| [11] |
MNIH V, KAVUKCUOGLU K, SILVER D, et al. Human-level control through deep reinforcement learning[J]. Nature, 2015, 518(7540): 529-533. doi: 10.1038/nature14236
|
| [12] |
KAELBLING L P, LITTMAN M L, MOORE A W. Reinforcement learning: a survey[J]. Journal of Artificial Intelligence Research, 1996, 4: 237-285. doi: 10.1613/jair.301
|
| [13] |
WATKINS C W, DAYAN P. Q-learning[J]. Machine learning, 1992, 8: 279-292.
|
| [14] |
LIU Z. Artificial intelligence for engineers. basics and implementations[M].Berlin:Springer, 2025.
|
| [15] |
PANG G, SHEN C, CAO C, et al. Deep learning for anomaly detection: a review[J]. ACM Comput. Surv, 2021, 54(2): 1-38.
|
| [16] |
TERCAN H, TMEISEN T. Machine learning and deep learning based predictive quality in manufacturing: a systematic review[J]. Journal of Intelligent Manufacturing, 2022, 33: 1879-1905. doi: 10.1007/s10845-022-01963-8
|
| [17] |
HU Z Y, WEI Z H, SUN H, et al. Optimization of metal rolling control using soft computing approaches: a review[J]. Archives of Computational Methods in Engineering, 2021, 28: 405-421. doi: 10.1007/s11831-019-09380-6
|
| [18] |
SUN J, SHAN P F, WEI Z, et al. Data-based flatness prediction and optimization in tandem cold rolling[J]. Journal of Iron and Steel Research, International, 2021, 11: 563-573.
|
| [19] |
LU X, SUN J, SONG Z X, et al. Prediction and analysis of cold rolling mill vibration based on a data-driven method[J]. Applied Soft Computing, 2020, 96: 106706. doi: 10.1016/j.asoc.2020.106706
|
| [20] |
HU Y, SUN J, PENG W, et al. A novel forecast model based on CF-PSO-SVM approach for predicting the roll gap in acceleration and deceleration process[J]. Engineering Computations, 2020, 38(3): 1117-1133.
|
| [21] |
SONG J, REN T Z, WANG K Y, et al. Optimization of work roll bending model in unsteady process of tandem cold rolling based on CF-PSO-SVM[J]. Iron and Steel, 2021, 11: 78-86. (宋君, 任廷志, 王奎越, 等. 基于CF-PSO-SVM的冷连轧非稳态工作辊弯辊模型优化[J]. 钢铁, 2021, 11: 78-86.
SONG J, REN T Z, WANG K Y, et al. Optimization of work roll bending model in unsteady process of tandem cold rolling based on CF-PSO-SVM[J]. Iron and Steel, 2021, 11: 78-86.
|
| [22] |
WANG Y, LI C S, PENG L G, et al. Application of convolutional neural networks for prediction of strip flatness in tandem cold rolling process[J]. Journal of Manufacturing Processes, 2021, 68: 512-522. doi: 10.1016/j.jmapro.2021.05.062
|
| [23] |
CHEN L Z, SUN W Q, HE A R, et al. Research on thickness defect control of strip head based on GA-BP rolling force preset model[J]. Metals, 2022, 12: 924-940. doi: 10.3390/met12060924
|
| [24] |
HUANG Y, ZHOU X M, GAO Z Y. Thickness prediction of thin strip cold rolling based on VBGM-RBF[J]. The International Journal of Advanced Manufacturing Technology, 2022, 120: 5865-5884. doi: 10.1007/s00170-022-09122-2
|
| [25] |
CHEN S Z, BAI Y S, HOU J Q, et al. Rolling force prediction model for cold rolling based on GA-FELM[J]. Journal of Yanshan University, 2022, 46(3): 46v224-229. (陈树宗, 白芸松, 侯佳琦, 等. 基于GA-FELM算法的冷轧轧制力预测模型[J]. 燕山大学学报, 2022, 46(3): 46v224-229. doi: 10.3969/j.issn.1007-791X.2022.03.005
CHEN S Z, BAI Y S, HOU J Q, et al. Rolling force prediction model for cold rolling based on GA-FELM[J]. Journal of Yanshan University, 2022, 46(3): 46v224-229. doi: 10.3969/j.issn.1007-791X.2022.03.005
|
| [26] |
CHEN S Z, HOU J Q, BAI Y S, et al. Rolling force prediction model for cold rolling based on MA-SVM[J]. Journal of Yanshan University, 2023, 47(5): 428-432. (陈树宗, 白芸松, 侯佳琦, 等. 基于MA-SVM算法的冷轧轧制力预测模型[J]. 燕山大学学报, 2023, 47(5): 428-432. doi: 10.3969/j.issn.1007-791X.2023.05.006
CHEN S Z, HOU J Q, BAI Y S, et al. Rolling force prediction model for cold rolling based on MA-SVM[J]. Journal of Yanshan University, 2023, 47(5): 428-432. doi: 10.3969/j.issn.1007-791X.2023.05.006
|
| [27] |
YUAN T H, SUN W Q, HE A R, et al. Research on quarter wave shape control of cold rolled high strength steel based on BP-MOPSO[J]. The International Journal of Advanced Manufacturing Technology, 2022, 122: 3867-3880. doi: 10.1007/s00170-022-10101-w
|
| [28] |
DING Y, DING C Y, SUN J, et al. Research on quarter wave shape control of cold rolled high strength steel based on BP-MOPSO[J]. Rolling, 2022, 39(6): 99-105.
|
| [29] |
CHEN Y F, PENG L G, WANG Y, et al. Prediction of tandem cold-rolled strip flatness based on Attention-LSTM model[J]. Journal of Manufacturing Processes, 2023, 91: 110-121. doi: 10.1016/j.jmapro.2023.02.048
|
| [30] |
ZHAO J W, LI J D, YANG Q, et al. A novel paradigm of flatness prediction and optimization for strip tandem cold rolling by cloud-edge collaboration[J]. Journal of Materials Processing Technology, 2023, 316: 117947. doi: 10.1016/j.jmatprotec.2023.117947
|
| [31] |
ZHAO J W, LI J D, QIE H T, et al. Online prediction of deformation resistance for strip tandem cold rolling based on data-driven[J]. Metals, 2023, 13: 737-756. doi: 10.3390/met13040737
|
| [32] |
YAN Z W, BU H N, HU C Z, et al. Rolling force prediction during FGC process of tandem cold rolling based on IQGA-WNN ensemble learning[J]. The International Journal of Advanced Manufacturing Technology, 2023, 125: 2869-2884. doi: 10.1007/s00170-023-10899-z
|
| [33] |
XIA J S, KHABAZ M K, PATRA I, et al. Using feed-forward perceptron Artificial Neural Network (ANN) model to determine the rolling force, power and slip of the tandem cold rolling[J]. ISA Transactions, 2023, 132: 353-363. doi: 10.1016/j.isatra.2022.06.009
|
| [34] |
SONG J, WANG K Y, CAO Z H. Application of fruit fly optimization neural network in cold rolling bending model[J]. Metallurgical Industry Automation, 2023, 47(3): 116-125. (宋君, 王奎越, 曹忠华. 果蝇优化神经网络在冷轧弯辊模型中的应用[J]. 冶金自动化, 2023, 47(3): 116-125. doi: 10.3969/j.issn.1000-7059.2023.03.013
SONG J, WANG K Y, CAO Z H. Application of fruit fly optimization neural network in cold rolling bending model[J]. Metallurgical Industry Automation, 2023, 47(3): 116-125. doi: 10.3969/j.issn.1000-7059.2023.03.013
|
| [35] |
LI J D, ZHAO J W, WANG X C, et al. An industrial IoT-based deformation resistance prediction and thickness control method of cold-rolled strip in steel production systems[J]. Information Sciences, 2024, 674: 120735. doi: 10.1016/j.ins.2024.120735
|
| [36] |
HAN G M, LI H B, WANG G, et al. Prediction and control of profile for silicon steel strip in the whole tandem cold rolling based on PSO-BP algorithm[J]. Journal of Manufacturing Processes, 2024, 120: 250-259. doi: 10.1016/j.jmapro.2024.04.050
|
| [37] |
CAO L, LI X, LI X H, et al. Variable speed rolling force prediction with theoretical and data-driven models[J]. International Journal of Mechanical Sciences, 2024, 264: 108833. doi: 10.1016/j.ijmecsci.2023.108833
|
| [38] |
DING C Y, YE J C, LEI J W, et al. An interpretable framework for high-precision flatness prediction in strip cold rolling[J]. Journal of Materials Processing Technology, 2024, 329: 118452. doi: 10.1016/j.jmatprotec.2024.118452
|
| [39] |
WANG Q L, SUN J, HU Y J, et al. Deep learning-based flatness prediction via multivariate industrial data for steel strip during tandem cold rolling[J]. Expert Systems With Applications, 2024, 237: 121777. doi: 10.1016/j.eswa.2023.121777
|
| [40] |
YANG W Q, ZHAO Z T, ZHU L Y, et al. Strip flatness prediction of cold rolling based on ensemble methods[J]. Journal of Iron and Steel Research, International, 2024, 31: 237-251. doi: 10.1007/s42243-023-01060-x
|
| [41] |
CHEN S Z, LIU Y X, WANG Y L, et al. Multi-dimension and multi-modal rolling mill vibration prediction model based on multi-level network fusion[J]. Journal of Central South University, 2024, 31: 3329-3348. doi: 10.1007/s11771-024-5762-9
|
| [42] |
NIU Y Y, LI X J, DENG C, et al. RBF neural network-based distributed nonlinear model predictive control on tandem cold rolling stands[J]. International Journal of Robust and Nonlinear Control, 2025, 35(6): 2451-2461.
|
| [43] |
BABAJAMALI Z, KHABAZ M K, AGHADAVOUDI F, et al. Pareto multi-objective optimization of tandem cold rolling settings for reductions and inter stand tension using Nsga-Ii[J]. ISA Transactions, 2022, 130: 399-408. doi: 10.1016/j.isatra.2022.04.002
|
| [44] |
HAN H G, FU S J, SUN H Y, et al. Hierarchical nonlinear model predictive control with multi-time-scale for wastewater treatment process[J]. Journal of Process Control, 2021, 108: 125-135. doi: 10.1016/j.jprocont.2021.11.002
|