| Citation: | ZHOU Kaimin, CAI Jinqiu, WANG Kaixuan, HOU Yanqing, HOU Jiao, WANG Jianguo. Stacked ensemble learning model-based prediction and optimization of the grade of titanium dioxide in high titanium slag[J]. IRON STEEL VANADIUM TITANIUM, 2025, 46(5): 111-122. doi: 10.7513/j.issn.1004-7638.2025.05.012 |
| [1] |
WANI T U, RATHER A H, KHAN R S, et al. Titanium dioxide functionalized multi-walled carbon nanotubes and silver nanoparticles reinforced polyurethane nanofibers as a novel scaffold for tissue engineering applications[J]. Journal of Industrial and Engineering Chemistry, 2023, 121 : 200-214.
|
| [2] |
AKINNAWO S. Synthesis, modification, applications and challenges of titanium dioxide nanoparticles[J]. Research Journal of Nanoscience and Engineering, 2019, 3(4).
|
| [3] |
LI Y, ZHONG M, HE X, et al. The combined effect of titanium dioxide nanoparticles and cypermethrin on male reproductive toxicity in rats[J]. Environmental Science and Pollution Research, 2023, 30(9) : 22176-22187.
|
| [4] |
HARUNA A, CHONG F K, HO Y C, et al. Preparation and modification methods of defective titanium dioxide-based nanoparticles for photocatalytic wastewater treatment—a comprehensive review[J]. Environmental Science and Pollution Research, 2022, 29: 70706-70745.
|
| [5] |
TIAN C, HUANG S, YANG Y. Influences of hydrolysis temperature and hydrolysis time on titanium white pigment via short sulfate process[J]. Advanced Materials Research, 2012, 602-604: 1255.
|
| [6] |
MIU B A, DINISCHIOTU A. Green synthesized titanium dioxide nanoparticles and their future applications in biomedicine, agriculture and industry[J]. Rev Biol Biomed Sci, 2021, 4(1): 1-21. doi: 10.31178/rbbs.2021.4.1.1
|
| [7] |
TIWARI P, VERMA M, AMBIKA, et al. Titanium dioxide-based nanoparticles and their applications in water remediation[J]. Journal of Environmental Engineering Science, 2023: 281-304.
|
| [8] |
LÜ X W, LÜ W, ZHANG Y Y, et al. Method for preparing high titanium slag through low temperature reduction and separation of titanium-containing iron ore: Chinese Patent CN106521139A[P]. 2017. (吕学伟, 吕炜, 张颖异, 等.一种低温还原分离含钛铁矿物制备高钛渣的方法 [P]. 中国专利: CN106521139A, 2017.
LÜ X W, LÜ W, ZHANG Y Y, et al. Method for preparing high titanium slag through low temperature reduction and separation of titanium-containing iron ore: Chinese Patent CN106521139A[P]. 2017.
|
| [9] |
DONG H G, GUO Y F, JIANG T, et al. Production of synthetic rutile from high Ca and Mg type titanium slag by mineral phase reconstruction process[J]. The Chinese Journal of Nonferrous Metals, 2012, 22(9): 2642-2647. (董海刚, 郭宇峰, 姜涛, 等.高钙镁型钛渣物相重构法制取人造金红石[J]. 中国有色金属学报, 2012, 22 (9): 2642-2647.
DONG H G, GUO Y F, JIANG T, et al. Production of synthetic rutile from high Ca and Mg type titanium slag by mineral phase reconstruction process[J]. The Chinese Journal of Nonferrous Metals, 2012, 22(9): 2642-2647.
|
| [10] |
KONDORI J, MIAH M I, ZENDEHBOUDI S, et al. Hybrid connectionist models to assess recovery performance of low salinity water injection[J]. Journal of Petroleum Science and Engineering, 2021, 197: 107833. doi: 10.1016/j.petrol.2020.107833
|
| [11] |
QU Y H. Rapid analysis of TiO2 in blast furnace slag by X-ray fluorescence spectrometry[J]. Metallurgical Analysis, 2003(5): 40-42. (曲月华. X 射线荧光光谱法快速分析高炉渣中 TiO2[J]. 冶金分析, 2003(5): 40-42.
QU Y H. Rapid analysis of TiO2 in blast furnace slag by X-ray fluorescence spectrometry[J]. Metallurgical Analysis, 2003(5): 40-42.
|
| [12] |
WU L P, ZENG Y, LIU W, et al. Determination of major and minor elements in high-titanium slag by fusion sample preparation-X-ray fluorescence spectrometry[J]. Multipurpose Utilization of Mineral Resources, 2017, (1): 81-84. (仵利萍, 曾英, 刘卫, 等. 熔融制样 - X 射线荧光光谱法测定高钛渣主次量元素 [J]. 矿产综合利用, 2017, (1): 81-84.
WU L P, ZENG Y, LIU W, et al. Determination of major and minor elements in high-titanium slag by fusion sample preparation-X-ray fluorescence spectrometry[J]. Multipurpose Utilization of Mineral Resources, 2017, (1): 81-84.
|
| [13] |
ZHENG M Q, LI B M, CHENG X H. Rapid analysis of mineral phases in titanium ore[J]. Rock and Mineral Analysis, 2010, 29(1): 61-63. (郑民奇, 李邦民, 程秀花. 钛矿石物相的快速分析[J]. 岩矿测试, 2010, 29 (1): 61-63.
ZHENG M Q, LI B M, CHENG X H. Rapid analysis of mineral phases in titanium ore[J]. Rock and Mineral Analysis, 2010, 29(1): 61-63.
|
| [14] |
CAO J C, LU M. Industrial water consumption prediction based on improved SSA-SVM with hybrid strategy[J]. Water Resources and Power, 2023, 41(9): 28-31. (曹敬椿, 卢敏. 基于混合策略改进 SSA-SVM 的工业用水量预测[J]. 水电能源科学, 2023, 41 (9): 28-31.
CAO J C, LU M. Industrial water consumption prediction based on improved SSA-SVM with hybrid strategy[J]. Water Resources and Power, 2023, 41(9): 28-31.
|
| [15] |
LI H, BU X, LIU X, et al. Evaluation and prediction of blast furnace status based on big data platform of ironmaking and data mining[J]. ISIJ International, 2021, 61(1): 108-118. doi: 10.2355/isijinternational.ISIJINT-2020-249
|
| [16] |
WANG Y, XU S, BWAR K, et al. Application of machine learning for composite moulding process modelling[J]. Composites Communications, 2024, 48: 101960. doi: 10.1016/j.coco.2024.101960
|
| [17] |
CAO Y H, CHEN C Y, XU S Z, et al. Machine learning assisted prediction and optimization of mechanical properties for laser powder bed fusion of Ti6Al4V Alloy[J]. Additive Manufacturing, 2024, 91: 104341. doi: 10.1016/j.addma.2024.104341
|
| [18] |
GUNASEGARAM D R, BARNARD A S, MATTHEWS M J, et al. Machine learning-assisted in-situ adaptive strategies for the control of defects and anomalies in metal additive manufacturing[J]. Additive Manufacturing, 2024, 81: 104013. doi: 10.1016/j.addma.2024.104013
|
| [19] |
HE Z, ZHANG H, CHENG H, et al. Machine learning guided BCC or FCC phase prediction in high entropy alloys[J]. Journal of Materials Research and Technology, 2024, 29: 3477-3486. doi: 10.1016/j.jmrt.2024.01.257
|
| [20] |
BAI M, WU X, TANG S, et al. Study on hot deformation behavior and recrystallization mechanism of an Al-6.3Zn-2.5Mg-2.6Cu-0.11Zr alloy based on machine learning[J]. Journal of Alloys and Compounds, 2024, 1000: 175086. doi: 10.1016/j.jallcom.2024.175086
|
| [21] |
HOSSAIN M A, MIRELES A J, STEWART C M. A machine learning approach for stress-rupture prediction of high temperature austenitic stainless steels[C]. Proceedings of the ASME Turbo Expo 2022: Turbomachinery Technical Conference and Exposition, Rotterdam, Netherlands, June 13-17, 2022: V007T17A029. ASME.
|
| [22] |
NAUTIYAL A, MISHRA A K. Machine learning approach for intelligent prediction of petroleum upstream stuck pipe challenge in oil and gas industry[J]. Environment Development and Sustainability, 2022.
|
| [23] |
SHI Z, DU L, HE X, et al. Prediction model of yield strength of V–N steel hot-rolled plate based on machine learning algorithm[J]. JOM, 2023, 75(5): 1750-1762. doi: 10.1007/s11837-023-05773-y
|
| [24] |
ÁLVARO R O, GERT G, MARTIN S, et al. Optimisation of operator support systems through artificial intelligence for the cast steel industry: a case for optimisation of the oxygen blowing process based on machine learning algorithms[J]. Journal of Manufacturing and Materials Processing, 2022, 6(2): 34-34. doi: 10.3390/jmmp6020034
|
| [25] |
MIENYE I D, SUN Y. A survey of ensemble learning: concepts, algorithms, applications, and prospects[J]. IEEE Access, 2022, 10 : 99129-99149.
|
| [26] |
LEE C Y, LIU Y Y, TAN B S, et al. Design of hybrid machine learning system for efficient prediction of parameters in metal forming processes[J]. International Journal of Advanced Manufacturing Technology, 2018, 97: 4389-4405.
|
| [27] |
RAMESH G R, RAJU S N C B, NAIDU M S S R. Mathematical modeling and prediction of quality characteristics in CNC turning using machine learning algorithms[J]. Journal of Manufacturing Science and Engineering, 2023, 145(2): 029902.
|
| [28] |
YU M, ZHANG X, HAN Q, et al. Data-Driven method for prediction of residual stress of welding process[J]. Journal of Materials Processing Technology, 2023, 313: 117618.
|
| [29] |
HANY A B, HE W C, ZHANG T J, et al. Process control and optimization for high-quality stainless steel strip production[J]. Computers & Industrial Engineering, 2022, 165: 107896.
|
| [30] |
HE A S, LIU Z L, WANG F Q, et al. Application of artificial intelligence algorithms in predictive maintenance of manufacturing equipment[J]. Journal of Advanced Manufacturing Technology, 2022, 118: 1177-1189.
|
| [31] |
ZHU S M, YOU M L. Discussion on several problems in improving TiO2 grade in high titanium slag production by electric heating method[J]. Iron Steel Vanadium Titanium, 1984, 1: 41-45.
|
| [32] |
RASHIDA S, PEYMAN P, LEI W. Data-Driven analyses of low salinity waterflooding in carbonates[J]. Applied Sciences, 2021, 11(14): 6651-6651. doi: 10.3390/app11146651
|
| [33] |
ISKANDAROV J, FANOURGAKIS G S, AHMED S, et al. Data-Driven prediction of in situ CO2 foam strength for enhanced oil recovery and carbon sequestration[J]. RSC Advances, 2022, 12: 35703-35711. doi: 10.1039/D2RA05841C
|
| [34] |
WANG Z, HUANG Y, LIU Y, et al. Prediction model of strip crown in hot rolling process based on machine learning and industrial data[J]. Metals, 2023, 13(5): 900. doi: 10.3390/met13050900
|
| [35] |
KARIMINEJAD M, TORMEY D, O'HARA C, et al. Prediction of hotspots in injection moulding by using simulation, in-mould sensors, and machine learning[C]. 2023 9th International Conference on Control, Decision and Information Technologies (CoDIT), Rome, Italy, 2023: 309-314.
|
| [36] |
CHENG H, HE Y, ZENG P, et al. Deep Learning-based prediction of subsurface oil reservoir pressure using spatio-temporal well-logging data[J]. Advances in Water Resources, 2023: 1265–1275.
|
| [37] |
FIGUEIREDO S G, COSTA A M, GONÇALVES M J M, et al. Artificial intelligence algorithms in process systems engineering[M]. 1st ed. Cham: Springer, 2022.
|
| [38] |
LIU Y, ZHAN L, FANG Z, et al. Study on intelligent diagnosis and prediction of wear status in deep mining equipment under extreme environment[J]. Science Progress, 2023, 106: 009317132312036.
|
| [39] |
SINGH M, KUMAR S, NAIR P S K. Artificial intelligence-based approaches for predicting industrial asset reliability[J]. Materials, 2021, 14(23).
|
| [40] |
CHENG S F, CHENG W C. Application of machine learning algorithms in the predictive maintenance of industrial robots[J]. Procedia CIRP, 2022, 113: 595-600.
|
| [41] |
XIE Y Z, LIU B, ZHANG X L, et al. Predicting the wear life of railway track using machine learning: a case study[J]. Journal of Transportation Engineering, 2023, 149(5): 04023022. doi: 10.1061/JTEPBS.TEENG-7812
|
| [42] |
GOHAR M A K, JAMIL A S, RAZAK A H. Machine learning approach for predicting energy consumption in mManufacturing industry[J]. Advanced Science Letters, 2023, 29(12): 10760-10766.
|
| [43] |
PRADHAN M M, DUTTA B S, NARAYAN H S. Real-time prediction of industrial equipment health using artificial intelligence and internet of things[J]. Computers & Industrial Engineering, 2022, 164: 107976.
|
| [44] |
ZHUANG S S R, GUO L Y, ZHUANG W D, et al. Application of machine learning for predicting optimal parameters in manufacturing[J]. International Journal of Advanced Manufacturing Technology, 2022, 118(7): 1411-1424.
|