| Citation: | HE Yilei, NING Zhen, WU Die, ZHANG Yu, DUAN Qingchao, PU Jiansu, ZHU Yanlin. TAExplorer: visualizing key factors in titanium alloy performance[J]. IRON STEEL VANADIUM TITANIUM, 2025, 46(5): 123-132. doi: 10.7513/j.issn.1004-7638.2025.05.013 |
| [1] |
WILLIAMS J C, BOYER R R. Opportunities and issues in the application of titanium alloys for aerospace components[J]. Metals, 2020, 10(6): 705. doi: 10.3390/met10060705
|
| [2] |
UHLMANN E, KERSTING R, KLEIN T B, et al. Additive manufacturing of titanium alloy for aircraft components[J]. Procedia Cirp, 2015, 35: 55-60. doi: 10.1016/j.procir.2015.08.061
|
| [3] |
WANG Z, YANG Q W, TANG C, et al. Optimization of acid leaching process for titanium slag after alkali leaching of scr catalyst[J]. Guangdong Chemical Industry, 2022(49): 1-2.
|
| [4] |
LIU X, CHU P K, DING C. Surface modification of titanium, titanium alloys, and related materials for biomedical applications[J]. Materials Science and Engineering: R: Reports, 2004, 47(3-4): 49-121. doi: 10.1016/j.mser.2004.11.001
|
| [5] |
ZHANG H, YAN N, LIANG H, et al. Phase transformation and microstructure control of Ti2AlNb-based alloys: A review[J]. Journal of Materials Science & Technology, 2021, 80: 203-216.
|
| [6] |
CUI C, HU B M, ZHAO L, et al. Titanium alloy production technology, market prospects and industry development[J]. Materials & Design, 2011, 32(3): 1684-1691.
|
| [7] |
VEIGA C, DAVIM J P, LOUREIRO A J R. Properties and applications of titanium alloys: a brief review[J]. Rev. Adv. Mater. Sci, 2012, 32(2): 133-148.
|
| [8] |
KOSARAJU S, ANNE V G. Optimal machining conditions for turning Ti-6Al-4V using response surface methodology[J]. Advances in Manufacturing, 2013, 1(4): 329-339. doi: 10.1007/s40436-013-0047-9
|
| [9] |
HASHMI K H, ZAKRIA G, RAZA M B, et al. Optimization of process parameters for high speed machining of Ti-6Al-4V using response surface methodology[J]. The International Journal of Advanced Manufacturing Technology, 2016, 85(5): 1847-1856.
|
| [10] |
SULAIMAN M A, CHE HARON C H, GHANI J A, et al. Optimization of turning parameters for titanium alloy Ti-6Al-4V ELI using the response surface method (RSM)[J]. Journal of Advanced Manufacturing Technology (JAMT), 2013, 7(2).
|
| [11] |
MIA M, KHAN M A, DHAR N R. High-pressure coolant on flank and rake surfaces of tool in turning of Ti-6Al-4V: investigations on surface roughness and tool wear[J]. The International Journal of Advanced Manufacturing Technology, 2017, 90(5): 1825-1834.
|
| [12] |
ALI KHAN M, JAFFERY S H I, KHAN M, et al. Statistical analysis of energy consumption, tool wear and surface roughness in machining of titanium alloy (Ti-6Al-4V) under dry, wet and cryogenic conditions[J]. Mechanical sciences, 2019, 10(2): 561-573. doi: 10.5194/ms-10-561-2019
|
| [13] |
GÜNAY M, KAÇAL A, TURGUT Y. Optimization of machining parameters in milling of Ti-6Al-4V alloy using Taguchi method[J]. Engineering Sciences, 2011, 6(1): 428-440.
|
| [14] |
NAM J, LEE S W. Machinability of titanium alloy (Ti-6Al-4V) in environmentally-friendly micro-drilling process with nanofluid minimum quantity lubrication using nanodiamond particles[J]. International Journal of Precision Engineering and Manufacturing-Green Technology, 2018, 5(1): 29-35. doi: 10.1007/s40684-018-0003-z
|
| [15] |
ELTAGGAZ A, NOUZIL I, DEIAB I. Machining Ti-6Al-4V alloy using nano-cutting fluids: Investigation and analysis[J]. Journal of Manufacturing and Materials Processing, 2021, 5(2): 42. doi: 10.3390/jmmp5020042
|
| [16] |
ZHU C, LI C, WU D, et al. A titanium alloys design method based on high-throughput experiments and machine learning[J]. Journal of Materials Research and Technology, 2021, 11: 2336-2353. doi: 10.1016/j.jmrt.2021.02.055
|
| [17] |
ZOU C, LI J, WANG W Y, et al. Integrating data mining and machine learning to discover high-strength ductile titanium alloys[J]. Acta Materialia, 2021, 202: 211-221. doi: 10.1016/j.actamat.2020.10.056
|
| [18] |
OUTEIRO J, CHENG W, CHINESTA F, et al. Modelling and optimization of machining of Ti-6Al-4V titanium alloy using machine learning and design of experiments methods[J]. Journal of Manufacturing and Materials Processing, 2022, 6(3): 58. doi: 10.3390/jmmp6030058
|
| [19] |
LIU X, PENG Q, PAN S, et al. Machine learning assisted prediction of microstructures and Young’s modulus of biomedical multi-component β-Ti alloys[J]. Metals, 2022, 12(5): 796. doi: 10.3390/met12050796
|
| [20] |
CHAI C, WANG Y, ZHAO S, et al. Machine learning-assisted design of low elastic modulus β-type medical titanium alloys and experimental validation[J]. Computational Materials Science, 2024, 238: 112902. doi: 10.1016/j.commatsci.2024.112902
|
| [21] |
PATURI U M R, PALAKURTHY S T, CHERUKU S, et al. Role of machine learning in additive manufacturing of titanium alloys—A review[J]. Archives of Computational Methods in Engineering, 2023, 30(8): 5053-5069. doi: 10.1007/s11831-023-09969-y
|
| [22] |
ANGELINI M, SANTUCCI G, SCHUMANN H, et al. A review and characterization of progressive visual analytics[C]//Informatics. MDPI, 2018, 5(3): 31.
|
| [23] |
KAHNG M, ANDREWS P Y, KALRO A, et al. A cti v is: Visual exploration of industry-scale deep neural network models[J]. IEEE transactions on visualization and computer graphics, 2017, 24(1): 88-97.
|
| [24] |
LIU S, WANG X, LIU M, et al. Towards better analysis of machine learning models: A visual analytics perspective[J]. Visual Informatics, 2017, 1(1): 48-56. doi: 10.1016/j.visinf.2017.01.006
|
| [25] |
LU J, CHEN W, MA Y, et al. Recent progress and trends in predictive visual analytics[J]. Frontiers of Computer Science, 2017, 11(2): 192-207. doi: 10.1007/s11704-016-6028-y
|
| [26] |
LU Y, GARCIA R, HANSEN B, et al. The state‐of‐the‐art in predictive visual analytics[C]//Computer Graphics Forum. 2017, 36(3): 539-562.
|
| [27] |
CHENG S, SHEN H, SHAN G, et al. Visual analysis of meteorological satellite data via model-agnostic meta-learning[J]. Journal of Visualization, 2021, 24(2): 301-315. doi: 10.1007/s12650-020-00704-4
|
| [28] |
YUAN J, CHEN C, YANG W, et al. A survey of visual analytics techniques for machine learning[J]. Computational Visual Media, 2021, 7(1): 3-36. doi: 10.1007/s41095-020-0191-7
|
| [29] |
SUN G D, WU Y C, LIANG R H, et al. A survey of visual analytics techniques and applications: State-of-the-art research and future challenges[J]. Journal of Computer Science and Technology, 2013, 28(5): 852-867. doi: 10.1007/s11390-013-1383-8
|
| [30] |
ANDRIENKO N, ANDRIENKO G. Visual analytics of movement: An overview of methods, tools and procedures[J]. Information visualization, 2013, 12(1): 3-24. doi: 10.1177/1473871612457601
|
| [31] |
PREIM B, LAWONN K. A survey of visual analytics for public health[C]//Computer Graphics Forum. 2020, 39(1): 543-580.
|