Volume 46 Issue 5
Oct.  2025
Turn off MathJax
Article Contents
YIN Xingpeng, LI Junhao, TANG Xinzhen, LI Zhou. Research progress on machine learning-assisted inverse design of triply periodic minimal surface structures[J]. IRON STEEL VANADIUM TITANIUM, 2025, 46(5): 133-144. doi: 10.7513/j.issn.1004-7638.2025.05.014
Citation: YIN Xingpeng, LI Junhao, TANG Xinzhen, LI Zhou. Research progress on machine learning-assisted inverse design of triply periodic minimal surface structures[J]. IRON STEEL VANADIUM TITANIUM, 2025, 46(5): 133-144. doi: 10.7513/j.issn.1004-7638.2025.05.014

Research progress on machine learning-assisted inverse design of triply periodic minimal surface structures

doi: 10.7513/j.issn.1004-7638.2025.05.014
More Information
  • Received Date: 2025-06-13
  • Accepted Date: 2025-07-07
  • Rev Recd Date: 2025-07-02
  • Publish Date: 2025-10-30
  • Triply periodic minimal surface (TPMS) structures are a class of bio-inspired porous architectures generated through mathematical implicit functions, known for their continuous smooth surfaces, self-supporting characteristics, high specific strength, and excellent energy absorption capabilities. These features make TPMS structures particularly suitable for lightweight, high-performance materials such as titanium alloys used in aerospace and advanced manufacturing applications. This work provides a comprehensive review of the design methodologies and advancements in the mechanical performance analysis of TPMS metal structures, with particular emphasis on the geometric modeling algorithms and the construction strategies for gradient and combined structural configurations. It further synthesizes the current state of machine learning applications in the design of TPMS metal structure, encompassing forward machine learning approaches for performance prediction and inverse machine learning frameworks for goal-oriented structural design. The review concludes with a critical assessment of existing challenges in inverse design of TPMS metal structures, particularly regarding efficient mapping and dataset generation. Finally, it highlights the urgent need for deep integrating generative artificial intelligence (Generative AI) techniques with inverse modeling strategies to facilitate the practical engineering implementation of TPMS metal structure inverse design.
  • loading
  • [1]
    FENG J W, FU J Z, YAO X H, et al. Triply periodic minimal surface (TPMS) porous structures: from multi-scale design, precise additive manufacturing to multidisciplinary applications[J]. International Journal of Extreme Manufacturing, 2022, 4(2): 022001. doi: 10.1088/2631-7990/ac5be6
    [2]
    ZHANG J, XIE S C, JING K K, et al. Study on isotropic design of triply periodic minimal surface structures under an elastic modulus compensation mechanism[J]. Composite Structures, 2024, 342: 118266. doi: 10.1016/j.compstruct.2024.118266
    [3]
    PENG C X, FOX K, QIAN M, et al. 3D printed sandwich beams with bioinspired cores: Mechanical performance and modelling[J]. Thin-Walled Structures, 2021, 161: 107471. doi: 10.1016/j.tws.2021.107471
    [4]
    CHEN R G, ZHANG W J, JIA Y F, et al. Ultra-stiff and quasi-elastic-isotropic triply periodic minimal surface structures designed by deep learning[J]. Materials & Design, 2024, 244: 113107.
    [5]
    JIN J L, WU S Q, YANG L, et al. Ni–Ti multicell interlacing Gyroid lattice structures with ultra-high hyperelastic response fabricated by laser powder bed fusion[J]. International Journal of Machine Tools and Manufacture, 2024, 195: 104099. doi: 10.1016/j.ijmachtools.2023.104099
    [6]
    SURJADI J U, GAO L B, DU H F, et al. Mechanical metamaterials and their engineering applications[J]. Advanced Engineering Materials, 2019, 21(3): 1800864. doi: 10.1002/adem.201800864
    [7]
    SHI J P, ZHU L Y, LI L, et al. A TPMS-based method for modeling porous scaffolds for bionic bone tissue engineering[J]. Scientific Reports, 2018, 8(1): 7395. doi: 10.1038/s41598-018-25750-9
    [8]
    HESSELMANN F, HALWES M, BONGARTZ P, et al. TPMS-based membrane lung with locally-modified permeabilities for optimal flow distribution[J]. Scientific Reports, 2022, 12(1): 7160. doi: 10.1038/s41598-022-11175-y
    [9]
    TRIPATHI Y, SHUKLA M, BHATT A D. Implicit-function-based design and additive manufacturing of triply periodic minimal surfaces scaffolds for bone tissue engineering[J]. Journal of Materials Engineering and Performance, 2019, 28(12): 7445-7451. doi: 10.1007/s11665-019-04457-6
    [10]
    ZOU S J, MU Y R, PAN B C, et al. Mechanical and biological properties of enhanced porous scaffolds based on triply periodic minimal surfaces[J]. Materials & Design, 2022, 219: 110803.
    [11]
    REN F X, ZHANG C D, LIAO W H, et al. Transition boundaries and stiffness optimal design for multi-TPMS lattices[J]. Materials & Design, 2021, 210: 110062.
    [12]
    YETIK O, ENGÜN S, KOK B, et al. Thermal management system of batteries using AlN reinforced TPMS-PCM composite material[J]. Energy, 2024, 313: 134137. doi: 10.1016/j.energy.2024.134137
    [13]
    CUI Y L, GAIN A K, ZHANG L C, et al. Manufacture and property characterization of interconnected pore-gradient TPMS materials[J]. Materials Science and Engineering: A, 2024, 892: 146100. doi: 10.1016/j.msea.2024.146100
    [14]
    QIU N, WAN Y H, SHEN Y J, et al. Experimental and numerical studies on mechanical properties of TPMS structures[J]. International Journal of Mechanical Sciences, 2024, 261: 108657. doi: 10.1016/j.ijmecsci.2023.108657
    [15]
    WANG Y Z, WU C Q, JI W J, et al. Machine learning-assisted precision inverse design research of ternary cathode materials: A new paradigm for material design[J]. Journal of Colloid and Interface Science, 2025, 680: 505-517. doi: 10.1016/j.jcis.2024.11.104
    [16]
    MI X X, TIAN L J, TANG A T, et al. A reverse design model for high-performance and low-cost magnesium alloys by machine learning[J]. Computational Materials Science, 2022, 201: 110881. doi: 10.1016/j.commatsci.2021.110881
    [17]
    SONG Y, SUN Y W, ZOU Z W, et al. Systematic study of the thermal and hydraulic characteristics of a heat exchanger based on the Schwartz-D structure for aviation application[J]. International Communications in Heat and Mass Transfer, 2024, 156: 107611. doi: 10.1016/j.icheatmasstransfer.2024.107611
    [18]
    FENG J W, FU J Z, SHANG C, et al. Sandwich panel design and performance optimization based on triply periodic minimal surfaces[J]. Computer-Aided Design, 2019, 115: 307-322. doi: 10.1016/j.cad.2019.06.007
    [19]
    HUANG W S, NING H Y, LI N, et al. Thermal-hydraulic performance of TPMS-based regenerators in combined cycle aero-engine[J]. Applied Thermal Engineering, 2024, 250: 123510. doi: 10.1016/j.applthermaleng.2024.123510
    [20]
    ZHANG Y, YAN Z J, SHEN M W, et al. Study on the thermal control performance of lightweight minimal surface lattice structures for aerospace applications[J]. Applied Thermal Engineering, 2025, 261: 125110. doi: 10.1016/j.applthermaleng.2024.125110
    [21]
    ZHANG T, ZHANG K F, LIU F, et al. Analysis of thermal storage behavior of composite phase change materials embedded with gradient-designed TPMS thermal conductivity enhancers: A numerical and experimental study[J]. Applied Energy, 2024, 358: 122630. doi: 10.1016/j.apenergy.2024.122630
    [22]
    NOVAK N, BOROVINŠEK M, AL-KETAN O, et al. Impact and blast resistance of uniform and graded sandwich panels with TPMS cellular structures[J]. Composite Structures, 2022, 300: 116174. doi: 10.1016/j.compstruct.2022.116174
    [23]
    ZHANG Y, CHEN Y G, LI J X, et al. Protective performance of hybrid triply periodic minimal surface lattice structure[J]. Thin-Walled Structures, 2024, 194: 111288. doi: 10.1016/j.tws.2023.111288
    [24]
    NOVAK N, AL-KETAN O, KRSTULOVIĆ-OPARA L, et al. Quasi-static and dynamic compressive behaviour of sheet TPMS cellular structures[J]. Composite Structures, 2021, 266: 113801. doi: 10.1016/j.compstruct.2021.113801
    [25]
    PHUNG-VAN P, HUNG P T, THAI C H. Small-dependent nonlinear analysis of functionally graded triply periodic minimal surface nanoplates[J]. Composite Structures, 2024, 335: 117986. doi: 10.1016/j.compstruct.2024.117986
    [26]
    YAN X N. Research on design and impact protection performance of metal/ceramic heterogeneous lattice structure[D]. Xuzhou: China University of Mining and Technology, 2021. (严效男. 金属/陶瓷异质点阵结构设计与冲击防护性能研究[D]. 徐州: 中国矿业大学, 2021.

    YAN X N. Research on design and impact protection performance of metal/ceramic heterogeneous lattice structure[D]. Xuzhou: China University of Mining and Technology, 2021.
    [27]
    CHEN Y Z, WANG C H, HSIEH T Y, et al. An efficient parameterized neural network enhanced multiscale finite element modeling for triply periodic minimal surface meta-structures and its applications for femur[J]. Journal of Materials Research and Technology, 2024, 30: 6176-6194. doi: 10.1016/j.jmrt.2024.05.023
    [28]
    SONG K L, WANG Z H, LAN J, et al. Porous structure design and mechanical behavior analysis based on TPMS for customized root analogue implant[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2021, 115: 104222. doi: 10.1016/j.jmbbm.2020.104222
    [29]
    WANG J E, SCHUTZEICHEL M, PLAUMANN B, et al. Multidisciplinary design optimisation of lattice-based battery housing for electric vehicles[J]. Scientific Reports, 2024, 14(1): 12265. doi: 10.1038/s41598-024-60124-4
    [30]
    NOVAK N, KYTYR D, RADA V, et al. Compression behaviour of TPMS-filled stainless steel tubes[J]. Materials Science and Engineering: A, 2022, 852: 143680. doi: 10.1016/j.msea.2022.143680
    [31]
    PANESAR A, ABDI M, HICKMAN D, et al. Strategies for functionally graded lattice structures derived using topology optimisation for Additive Manufacturing[J]. Additive Manufacturing, 2018, 19: 81-94. doi: 10.1016/j.addma.2017.11.008
    [32]
    JIANG W M, LIAO W H, LIU T T, et al. A voxel-based method of multiscale mechanical property optimization for the design of graded TPMS structures[J]. Materials & Design, 2021, 204: 109655.
    [33]
    WANG H T. Research on the crashworthiness of automobile front longitudinal beam based on periodic minimal surface structure reinforcement[D]. Dalian: Dalian University of Technology, 2019. (王赫庭. 基于周期极小曲面结构加强的汽车前纵梁防撞性研究[D]. 大连: 大连理工大学, 2019.

    WANG H T. Research on the crashworthiness of automobile front longitudinal beam based on periodic minimal surface structure reinforcement[D]. Dalian: Dalian University of Technology, 2019.
    [34]
    ZHENG X J. Crashworthiness optimization design of a novel bionic hierarchical porous structure[D]. Changsha: Hunan University, 2020. (郑贤君. 新型仿生层级多孔结构的耐撞性优化设计[D]. 长沙: 湖南大学, 2020.

    ZHENG X J. Crashworthiness optimization design of a novel bionic hierarchical porous structure[D]. Changsha: Hunan University, 2020.
    [35]
    SEEHANAM S, CHANCHAREON W, PROMOPPATUM P. Assessing the effect of manufacturing defects and non-Newtonian blood model on flow behaviors of additively manufactured Gyroid TPMS structures[J]. Heliyon, 2023, 9(5): e15711. doi: 10.1016/j.heliyon.2023.e15711
    [36]
    KIM D Y, KIM H S, KAMATH S S, et al. TPMS-based auxetic structure for high-performance airless tires with variable stiffness depending on deformation[J]. Scientific Reports, 2024, 14(1): 11419. doi: 10.1038/s41598-024-62101-3
    [37]
    GIDE K M, BAGHERI Z S. Mechanical behavior and material modeling of fused filament fabricated PEEK based on TPMS lattices: a comparative study[J]. The International Journal of Advanced Manufacturing Technology, 2024, 134(5): 2765-2780.
    [38]
    TYAGI S A, MANJAIAH M. Fine porous stainless steel TPMS cellular structures: Printability and post-processing evaluation[J]. Journal of The Institution of Engineers (India): Series D, 2024, 105(3): 2045-2052. doi: 10.1007/s40033-023-00598-0
    [39]
    YANG H. Research on modeling methods of porous structures[D]. Nanjing: Southeast University, 2017. (杨辉. 多孔结构的建模方法研究[D]. 南京: 东南大学, 2017.

    YANG H. Research on modeling methods of porous structures[D]. Nanjing: Southeast University, 2017.
    [40]
    KARAKOÇ A. RegionTPMS—Region based triply periodic minimal surfaces (TPMS) for 3-D printed multiphase bone scaffolds with exact porosity values[J]. SoftwareX, 2021, 16: 100835. doi: 10.1016/j.softx.2021.100835
    [41]
    LEI H Y. Research on parametric modeling for active design of porous functional structures[D]. Guangzhou: South China University of Technology, 2021. (雷鸿源. 面向多孔功能结构主动设计的参数化建模研究[D]. 广州: 华南理工大学, 2021.

    LEI H Y. Research on parametric modeling for active design of porous functional structures[D]. Guangzhou: South China University of Technology, 2021.
    [42]
    WANG G J, SHEN L D, ZHAO J F, et al. Design and compressive behavior of controllable irregular porous scaffolds: Based on Voronoi-Tessellation and for additive manufacturing[J]. ACS Biomaterials Science & Engineering, 2018, 4(2): 719-727.
    [43]
    SOTOMAYOR O E, TIPPUR H V. Role of cell regularity and relative density on elasto-plastic compression response of random honeycombs generated using Voronoi diagrams[J]. International Journal of Solids and Structures, 2014, 51(21): 3776-3786.
    [44]
    GÓMEZ S, VLAD M D, LÓPEZ J, et al. Design and properties of 3D scaffolds for bone tissue engineering[J]. Acta Biomaterialia, 2016, 42: 341-350. doi: 10.1016/j.actbio.2016.06.032
    [45]
    SHI X, LIAO W H, LIU T T, et al. Design optimization of multimorphology surface-based lattice structures with density gradients[J]. The International Journal of Advanced Manufacturing Technology, 2021, 117(7): 2013-2028.
    [46]
    FENG Y X, HUANG T, GONG Y H, et al. Stiffness optimization design for TPMS architected cellular materials[J]. Materials & Design, 2022, 222: 111078.
    [47]
    OZDEMIR M, SIMSEK U, KIZILTAS G, et al. A novel design framework for generating functionally graded multi-morphology lattices via hybrid optimization and blending methods[J]. Additive Manufacturing, 2023, 70: 103560. doi: 10.1016/j.addma.2023.103560
    [48]
    PARLAYAN O, OZDEMIR M, GAYIR C E, et al. A new sensitivity-based mapping scheme for topology optimization of graded TPMS designs[J]. The International Journal of Advanced Manufacturing Technology, 2023, 129(7): 3197-3220.
    [49]
    GÜNTHER F, PILZ S, HIRSCH F, et al. Shape optimization of additively manufactured lattices based on triply periodic minimal surfaces[J]. Additive Manufacturing, 2023, 73: 103659. doi: 10.1016/j.addma.2023.103659
    [50]
    LI D W, DAI N, TANG Y L, et al. Design and optimization of graded cellular structures with triply periodic level surface-based topological shapes[J]. Journal of Mechanical Design, 2019, 141(071402).
    [51]
    NGUYEN-XUAN H, TRAN K Q, THAI C H, et al. Modelling of functionally graded triply periodic minimal surface (FG-TPMS) plates[J]. Composite Structures, 2023, 315: 116981. doi: 10.1016/j.compstruct.2023.116981
    [52]
    QIU N, ZHANG J Z, YUAN F Q, et al. Mechanical performance of triply periodic minimal surface structures with a novel hybrid gradient fabricated by selective laser melting[J]. Engineering Structures, 2022, 263: 114377. doi: 10.1016/j.engstruct.2022.114377
    [53]
    LI K, LIAO R B, ZHENG Q C, et al. Design exploration of staggered hybrid minimal surface magnesium alloy bone scaffolds[J]. International Journal of Mechanical Sciences, 2024, 281: 109566. doi: 10.1016/j.ijmecsci.2024.109566
    [54]
    CHEN Z Y, WU B S, CHEN X, et al. Energy absorption and impact resistance of hybrid triply periodic minimal surface (TPMS) sheet-based structures[J]. Materials Today Communications, 2023, 37: 107352. doi: 10.1016/j.mtcomm.2023.107352
    [55]
    YE H L, TIAN F W, HE W L, et al. Mechanical and thermal property analysis and optimization design of hybrid lattice structure based on triply periodic minimal surfaces[J]. Thin-Walled Structures, 2024, 203: 112203. doi: 10.1016/j.tws.2024.112203
    [56]
    NOVAK N, AL-KETAN O, BOROVINŠEK M, et al. Development of novel hybrid TPMS cellular lattices and their mechanical characterisation[J]. Journal of Materials Research and Technology, 2021, 15: 1318-1329. doi: 10.1016/j.jmrt.2021.08.092
    [57]
    WANG H, TAN D W, LIU Z P, et al. On crashworthiness of novel porous structure based on composite TPMS structures[J]. Engineering Structures, 2022, 252: 113640. doi: 10.1016/j.engstruct.2021.113640
    [58]
    ZHANG X Y. Research on SLM-formed sandwich structure based on three-periodic minimal surface[D]. Chongqing: Chongqing University, 2019. (张馨月. 基于三周期极小曲面的SLM成形夹芯结构研究[D]. 重庆: 重庆大学, 2019.

    ZHANG X Y. Research on SLM-formed sandwich structure based on three-periodic minimal surface[D]. Chongqing: Chongqing University, 2019.
    [59]
    ZHONG M T. Research on gradient TPMS structure design and mechanical behavior of 316L stainless steel and NiTi shape memory alloy[D]. Guangzhou: Guangzhou University, 2022. (钟敏婷. 316L不锈钢和NiTi形状记忆合金的梯度TPMS结构设计及力学行为研究[D]. 广州: 广州大学, 2022.

    ZHONG M T. Research on gradient TPMS structure design and mechanical behavior of 316L stainless steel and NiTi shape memory alloy[D]. Guangzhou: Guangzhou University, 2022.
    [60]
    GUO W. Research on energy absorption and application of three-dimensional curved lattice structure[D]. Changsha: Hunan University, 2020. (郭文. 三维曲面点阵结构吸能及应用研究[D]. 长沙: 湖南大学, 2020.

    GUO W. Research on energy absorption and application of three-dimensional curved lattice structure[D]. Changsha: Hunan University, 2020.
    [61]
    SUN Q D, SUN J, GUO K, et al. Compressive mechanical properties and energy absorption characteristics of SLM fabricated Ti6Al4V triply periodic minimal surface cellular structures[J]. Mechanics of Materials, 2022, 166: 104241. doi: 10.1016/j.mechmat.2022.104241
    [62]
    FENG G Z, LI S, XIAO L J, et al. Mechanical properties and deformation behavior of functionally graded TPMS structures under static and dynamic loading[J]. International Journal of Impact Engineering, 2023, 176: 104554. doi: 10.1016/j.ijimpeng.2023.104554
    [63]
    ZHANG J, XIE S C, LI T, et al. A study of multi-stage energy absorption characteristics of hybrid sheet TPMS lattices[J]. Thin-Walled Structures, 2023, 190: 110989. doi: 10.1016/j.tws.2023.110989
    [64]
    LI C T. Research on morphology optimization and mechanical properties of mechanical metamaterials based on deep learning[D]. Nanjing: Southeast University, 2021. (李长通. 基于深度学习的力学超材料形态优化及力学性能研究[D]. 南京: 东南大学, 2021.

    LI C T. Research on morphology optimization and mechanical properties of mechanical metamaterials based on deep learning[D]. Nanjing: Southeast University, 2021.
    [65]
    ZHANG J W, ZHAO J X, RONG Q G, et al. Machine learning guided prediction of mechanical properties of TPMS structures based on finite element simulation for biomedical titanium[J]. Materials Technology, 2022, 37(1): 1-8.
    [66]
    BARBIAN K P, HIRSCHWALD L T, LINKHORST J, et al. Flow and mass transfer prediction in anisotropic TPMS-structures as extracorporeal oxygenator membranes using reduced order modeling[J]. Journal of Membrane Science, 2024, 690: 122160. doi: 10.1016/j.memsci.2023.122160
    [67]
    HAN S Y, WANG Z, E-MELIGY M, et al. Nonlinear dynamic analysis of the FG-TPMS double-curved panels: Introducing SVM-DNN-RF algorithm to predict nonlinear dynamic information[J]. Aerospace Science and Technology, 2024: 109785.
    [68]
    ZHANG H Q. Research on mechanical performance design system based on 3D printing and deep learning[D]. Beijing: Tsinghua University, 2019. (张汉青. 基于3D打印和深度学习的力学性能设计体系研究[D]. 北京: 清华大学, 2019.

    ZHANG H Q. Research on mechanical performance design system based on 3D printing and deep learning[D]. Beijing: Tsinghua University, 2019.
    [69]
    WANG Y Z, ZENG Q L, WANG J Z, et al. Inverse design of shell-based mechanical metamaterial with customized loading curves based on machine learning and genetic algorithm[J]. Computer Methods in Applied Mechanics and Engineering, 2022, 401: 115571. doi: 10.1016/j.cma.2022.115571
    [70]
    HU B, WANG Z J, DU C, et al. Multi-objective Bayesian optimization accelerated design of TPMS structures[J]. International Journal of Mechanical Sciences, 2023, 244: 108085. doi: 10.1016/j.ijmecsci.2022.108085
    [71]
    CHALLAPALLI A, PATEL D, LI G. Inverse machine learning framework for optimizing lightweight metamaterials[J]. Materials & Design, 2021, 208: 109937.
    [72]
    LI Z, LI J H, TIAN J H, et al. Performance-based inverse structural design of complex gradient triply periodic minimal surface structures based on a deep learning approach[J]. Materials Today Communications, 2024, 40: 109424. doi: 10.1016/j.mtcomm.2024.109424
    [73]
    LI Z, LI J H, TIAN J H, et al. Inverse design of cellular structures with the geometry of triply periodic minimal surfaces using generative artificial intelligence algorithms[J]. Engineering Structures, 2024, 321: 118988. doi: 10.1016/j.engstruct.2024.118988
    [74]
    LI Z, LI J H, TIAN J H, et al. Design of nonlinear gradient sheet-based TPMS-lattice using artificial neural networks[J]. Journal of Materials Research and Technology, 2024, 33: 223-234. doi: 10.1016/j.jmrt.2024.09.051
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)

    Article Metrics

    Article views (31) PDF downloads(10) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return