| Citation: | CHU Chengyu, WEN Jing, JIANG Tao, YANG Jinchao. In-situ preparation of sodium vanadium fluorophosphate from sodiumized vanadium slag leaching solution and its performance study[J]. IRON STEEL VANADIUM TITANIUM, 2025, 46(5): 154-162. doi: 10.7513/j.issn.1004-7638.2025.05.016 |
| [1] |
LEE J C, KURNIAWAN, KIM E Y, et al. A review on the metallurgical recycling of vanadium from slags: towards a sustainable vanadium production[J]. Journal of Materials Research and Technology, 2021, 12: 343-364. doi: 10.1016/j.jmrt.2021.02.065
|
| [2] |
GUO Y, LI H Y, SHEN S, et al. Recovery of vanadium from vanadium slag with high phosphorus content via recyclable microemulsion extraction[J]. Hydrometallurgy, 2020, 198: 105509. doi: 10.1016/j.hydromet.2020.105509
|
| [3] |
WEN J, JIANG T, XU Y, et al. Efficient extraction and separation of vanadium and chromium in high chromium vanadium slag by sodium salt roasting-(NH4)2SO4 leaching[J]. Journal of Industrial and Engineering Chemistry, 2019, 71: 327-335. doi: 10.1016/j.jiec.2018.11.043
|
| [4] |
ELLIS B L, NAZAR L F. Sodium and sodium-ion energy storage batteries[J]. Current Opinion in Solid State and Materials Science, 2012, 16(4): 168-177. doi: 10.1016/j.cossms.2012.04.002
|
| [5] |
LENG M, BI J, et al. Superior electrochemical performance of O3-type NaNi0.5-xMn0.3Ti0.2ZrxO2 cathode material for sodium-ion batteries from Ti and Zr substitution of the transition metals[J]. Journal of Alloys and Compounds, 2020, 816: 152581. doi: 10.1016/j.jallcom.2019.152581
|
| [6] |
ZHENG L, ZHANG D, et al. Continuous-flow rapid and controllable microfluidic synthesis of sodium vanadium fluorophosphate as a cathode material[J]. Applied Materials Today, 2021, 23: 101032. doi: 10.1016/j.apmt.2021.101032
|
| [7] |
HUANG X, ZHANG K, LIANG F, et al. Optimized solvothermal synthesis of LiFePO4 cathode material for enhanced high-rate and low temperature electrochemical performances[J]. Electrochimica Acta, 2017, 258: 1149-1159. doi: 10.1016/j.electacta.2017.11.167
|
| [8] |
JING Q, ZHANG J, YANG C, et al. A novel and practical hydrothermal method for synthesizing LiNi1/3Co1/3Mn1/3O2 cathode material[J]. Ceramics International, 2020, 46(12): 20020-20026. doi: 10.1016/j.ceramint.2020.05.073
|
| [9] |
GOVER R, BRYAN A, BURNS P, et al. The electrochemical insertion properties of sodium vanadium fluorophosphate, Na3V2(PO4)2F3[J]. Solid State Ionics, 2006, 177(17-18): 1495-1500. doi: 10.1016/j.ssi.2006.07.028
|
| [10] |
LI Z Y, TANG T, WANG Z H, et al. Preparation of lithium manganese iron phosphate cathode material from vanadium tailings[J]. Iron Steel Vanadium Titanium, 2024, 45(6): 19-27. (李智宇, 汤婷, 王正豪, 等. 从提钒尾液制备磷酸锰铁锂正极材料的研究[J]. 钢铁钒钛, 2024, 45(6): 19-27. doi: 10.7513/j.issn.1004-7638.2024.06.003
LI Z Y, TANG T, WANG Z H, et al. Preparation of lithium manganese iron phosphate cathode material from vanadium tailings[J]. Iron Steel Vanadium Titanium, 2024, 45(6): 19-27. doi: 10.7513/j.issn.1004-7638.2024.06.003
|
| [11] |
WANG S W, ZHENG H, WANG J P. A method for directly preparing sodium vanadium phosphate cathode material from sodium-based vanadium solution: CN117361485A[P]. 2024-01-09. (王仕伟, 郑浩, 汪劲鹏. 一种钠法钒液直接制备磷酸钒钠正极材料的方法: 117361485A[P]. 2024-01-09.
WANG S W, ZHENG H, WANG J P. A method for directly preparing sodium vanadium phosphate cathode material from sodium-based vanadium solution: CN117361485A[P]. 2024-01-09.
|
| [12] |
NI W, XIN Y N, YANG Y, et al. A carbon-composite sodium vanadium phosphate-based cathode material for sodium-ion batteries and its short-process preparation method: CN119409157A[P]. 2025-02-11. (倪伟, 辛亚男, 杨亚, 等. 一种碳复合磷酸钒钠基钠电正极材料及其短流程制备方法: 119409157A[P]. 2025-02-11.
NI W, XIN Y N, YANG Y, et al. A carbon-composite sodium vanadium phosphate-based cathode material for sodium-ion batteries and its short-process preparation method: CN119409157A[P]. 2025-02-11.
|
| [13] |
MOSER T. Stability of model V P O catalysts for maleic anhydride synthesis[J]. Journal of Catalysis, 1987, 104(1): 99-108. doi: 10.1016/0021-9517(87)90340-X
|
| [14] |
XIE L, YANG Y, FU Z, et al. Fe/Zn-modified tricalcium phosphate (TCP) biomaterials: preparation and biological properties[J]. RSC Advances, 2019, 9(2): 781-789. doi: 10.1039/C8RA08453J
|
| [15] |
SHI G K, XIE J P, LI Z B, et al. A bismuth oxide-modified copper host achieving bubble-free and stable potassium metal batteries[J]. Chemical Science, 2025, 16(3): 1344-1352. doi: 10.1039/D4SC07483A
|
| [16] |
IGARASHI H, TSUJI K, OKUHARA T, et al. Effects of consecutive oxidation on the production of maleic anhydride in butane oxidation over four kinds of well-characterized vanadyl pyrophosphates[J]. Journal of Physical Chemistry, 1993, 97(27): 7065-7071. doi: 10.1021/j100129a023
|
| [17] |
PHAM Q N, WINTER M, MILANOVA V, et al. Magnetic enrichment of immuno-specific extracellular vesicles for mass spectrometry using biofilm-derived iron oxide nanowires[J]. Bioengineering, 2022.
|
| [18] |
LUO Q C, ZHANG D B, YUAN X R, et al. Revealing the regulation mechanism of Na3V2(PO4)2O2F crystal growth in sodium alginate solution for high-performance sodium ion batteries[J]. Journal of Power Sources, 2024, 623: 235438. doi: 10.1016/j.jpowsour.2024.235438
|
| [19] |
ZHANG D B, YUAN X R, XIN Y N, et al. Research on preparation of nano sodium vanadium phosphate and its sodium storage properties[J]. Iron Steel Vanadium Titanium, 2024, 45(1): 12-18. (张东彬, 袁欣然, 辛亚男, 等. 纳米磷酸钒钠的制备及其储钠性能研究[J]. 钢铁钒钛, 2024, 45(1): 12-18. doi: 10.7513/j.issn.1004-7638.2024.01.003
ZHANG D B, YUAN X R, XIN Y N, et al. Research on preparation of nano sodium vanadium phosphate and its sodium storage properties[J]. Iron Steel Vanadium Titanium, 2024, 45(1): 12-18. doi: 10.7513/j.issn.1004-7638.2024.01.003
|
| [20] |
NI W. Low-dimensional vanadium-based high-voltage cathode materials for promising rechargeable alkali-ion batteries[J]. Materials, 2024, 17: 587. doi: 10.3390/ma17030587
|