| Citation: | ZHU Yuhui, YANG Shengli, DANG Hengyao, JIANG Tiantian, GAO Fuyang, LIU Qianli, LÜ Yifan. Effect of hydrostatic pressure on stress corrosion susceptibility of low-cost titanium alloy plates and tubes[J]. IRON STEEL VANADIUM TITANIUM, 2025, 46(5): 177-183. doi: 10.7513/j.issn.1004-7638.2025.05.019 |
| [1] |
ZHANG R Q, ZHAO Q Y, GUO D Z, et al. High impact toughness of CT20 alloy induced by multi-factor coupling[J]. Journal of Materials Science & Technology, 2024, 192: 65-81.
|
| [2] |
LIU X H, WU C, HE W P, et al. Study on strengthening and toughening mechanisms of Ti80 alloy based on microstructure regulation[J]. Development and application of materials, 2024, 39(4): 28-37. (刘向宏, 吴聪, 和卫平, 等. 基于显微组织调控的Ti80合金强韧化机理研究[J]. 材料开发与应用, 2024, 39(4): 28-37.
LIU X H, WU C, HE W P, et al. Study on strengthening and toughening mechanisms of Ti80 alloy based on microstructure regulation[J]. Development and application of materials, 2024, 39(4): 28-37.
|
| [3] |
WU D, HAO M Y, ZHANG T L, et al. Heterostructures enhance simultaneously strength and ductility of a commercial titanium alloy[J]. Acta Materialia, 2023, 257: 119182. doi: 10.1016/j.actamat.2023.119182
|
| [4] |
YANG X W, LIN B, ZHANG H L, et al. Influence of stress on the corrosion behavior of Ti alloys: A review[J]. Journal of Alloys and Compounds, 2024, 985: 173346. doi: 10.1016/j.jallcom.2023.173346
|
| [5] |
ZHOU J L, LI X G, CHENG X Q, et al. Research progress on corrosion of metallic materials in deep sea environment[J]. Corrosion Science and Protection Technology, 2010, 22(1): 47-51. (周建龙, 李晓刚, 程学群, 等. 深海环境下金属及合金材料腐蚀研究进展[J]. 腐蚀科学与防护技术, 2010, 22(1): 47-51.
ZHOU J L, LI X G, CHENG X Q, et al. Research progress on corrosion of metallic materials in deep sea environment[J]. Corrosion Science and Protection Technology, 2010, 22(1): 47-51.
|
| [6] |
LIU H C, FAN L, ZHANG H B, et al. Research progress of stress corrosion cracking of Ti-alloy in deep sea environments[J]. Journal of Chinese Society for Corrosion and Protection, 2022, 42(2): 175-185. (柳皓晨, 范林, 张海兵, 等. 钛合金深海应力腐蚀研究进展[J]. 中国腐蚀与防护学报, 2022, 42(2): 175-185.
LIU H C, FAN L, ZHANG H B, et al. Research progress of stress corrosion cracking of Ti-alloy in deep sea environments[J]. Journal of Chinese Society for Corrosion and Protection, 2022, 42(2): 175-185.
|
| [7] |
LIU R, XIE Y S, JIN Y, et al. Stress corrosion cracking of the titanium alloys under hydrostatic pressure resulting from the degradation of passive films[J]. Acta Materialia, 2023, 252: 118946. doi: 10.1016/j.actamat.2023.118946
|
| [8] |
LIU J, LI X B, WANG J, Effect of hydrostatic pressure on the corrosion behaviors of two low alloy steels[J]. Acta Metallurgica Sinica. 2011, 47(6): 697-705. (刘杰, 李相波, 王佳. 模拟深海压力对2种低合金钢腐蚀行为的影响[J]. 金属学报, 2011, 47(6): 697-705.
LIU J, LI X B, WANG J, Effect of hydrostatic pressure on the corrosion behaviors of two low alloy steels[J]. Acta Metallurgica Sinica. 2011, 47(6): 697-705.
|
| [9] |
CHENG H X, LUO H, CHENG J, et al. Optimizing the corrosion resistance of additive manufacturing TC4 titanium alloy in proton exchange membrane water electrolysis anodic environment[J]. International Journal of Hydrogen Energy, 2024, 93: 753-769. doi: 10.1016/j.ijhydene.2024.10.440
|
| [10] |
YIN Y C, SUN Z J, XUE D, et al. Effect of post heat treatment on the microstructure and properties of as-annealed TC4 ELI alloy[J]. Iron Steel Vanadium Titanium, 2024, 45(3): 55-64. (尹艳超, 孙志杰, 薛达, 等. 后处理对退火态TC4 ELI合金显微组织与性能的影响[J]. 钢铁钒钛, 2024, 45(3): 55-64. doi: 10.7513/j.issn.1004-7638.2024.03.008
YIN Y C, SUN Z J, XUE D, et al. Effect of post heat treatment on the microstructure and properties of as-annealed TC4 ELI alloy[J]. Iron Steel Vanadium Titanium, 2024, 45(3): 55-64. doi: 10.7513/j.issn.1004-7638.2024.03.008
|
| [11] |
DONG Y C, HUANG S, WANG Y Y, et al. Stress corrosion cracking of TC4 ELI alloy with different microstructure in 3.5% NaCl solution[J]. Materials Characterization, 2022, 194: 112357. doi: 10.1016/j.matchar.2022.112357
|
| [12] |
DING Y, LÜ Y T, CHEN K, et al. Effects of microstructure on the stress corrosion cracking behavior of nickelaluminum bronze alloy in 3.5% NaCl solution[J]. Materials Science & Engineering A, 2018, 733: 361-373.
|
| [13] |
YAN L Y, ZHANG H Y, ZHANG S, et al. Influence of phase composition and stress on the corrosion behavior of metastable β titanium alloy Ti-5Mo-5V-6Cr-3Al in 15 wt% HCl solution[J]. Journal of Alloys and Compounds, 2025, 1010: 177258. doi: 10.1016/j.jallcom.2024.177258
|
| [14] |
WEN X M, HAO S, LIU S W, et al. Microstructure and corrosion behavior of Ti–10Mo–6Zr–4Sn–3Nb (Ti-B12) alloys as biomedical material in lactic acid-containing Hank’s solution[J]. International Journal of Electrochemical Science, 2025, 20: 100974. doi: 10.1016/j.ijoes.2025.100974
|
| [15] |
LIU X, ZHANG H Y, WANG S Y, et al. Effect of α phase on stress corrosion behavior of metastable β titanium alloy Ti-5.5Cr-5Al-4Al-3Nb-2Zr in 3.5wt% Nacl solution[J]. Rare Metal Materials and Engineering, 2025, 54(1): 209-217. (刘璇, 张浩宇, 王圣元, 等. α相对亚稳β钛合金Ti-5.5Cr-5Al-4Mo-3Nb-2Zr在 3.5% NaCl溶液中应力腐蚀行为的影响[J]. 稀有金属材料与工程, 2025, 54(1): 209-217. doi: 10.12442/j.issn.1002-185X.20230681
LIU X, ZHANG H Y, WANG S Y, et al. Effect of α phase on stress corrosion behavior of metastable β titanium alloy Ti-5.5Cr-5Al-4Al-3Nb-2Zr in 3.5wt% Nacl solution[J]. Rare Metal Materials and Engineering, 2025, 54(1): 209-217. doi: 10.12442/j.issn.1002-185X.20230681
|
| [16] |
SUN Z J, WANG Y. Research status and prospect of the stress-corrosion of titanium alloys[J]. Development and application of materials, 2020, 35(2): 94-100. (孙志杰, 王洋. 钛合金应力腐蚀研究现状及展望[J]. 材料开发与应用, 2020, 35(2): 94-100.
SUN Z J, WANG Y. Research status and prospect of the stress-corrosion of titanium alloys[J]. Development and application of materials, 2020, 35(2): 94-100.
|