Citation: | Ma Lige, Li Xiansheng. Effect of vanadium microalloying on properties of steel for automobile parts[J]. IRON STEEL VANADIUM TITANIUM, 2021, 42(4): 68-72. doi: 10.7513/j.issn.1004-7638.2021.04.012 |
[1] |
Liu Qingmei, Feng Jiaojie. Development and current situation of advanced high-strength steel under the condition of automobile light weight[J]. Steel Rolling, 2020,37(4):65−70, 90. (刘清梅, 封娇洁. 汽车轻量化条件下先进高强钢的发展及现状[J]. 轧钢, 2020,37(4):65−70, 90.
|
[2] |
Jin Xuejun, Gong Yu, Han Xianhong, et al. A review of current state and prospect of the manufacturing and application of advanced hot stamping automobile steels[J]. Acta Metallurgica Sinica, 2020,56(4):411−428. (金学军, 龚煜, 韩先洪, 等. 先进热成形汽车钢制造与使用的研究现状与展望[J]. 金属学报, 2020,56(4):411−428. doi: 10.11900/0412.1961.2019.00381
|
[3] |
Zhang Chengcheng, Ma Xiaolei, Zhang Chaolei, et al. Evolution and control of surface decarburization in automobile front axle steel 42CrMoH[J]. Materials Review, 2020,34(12):127−131. (张成成, 马潇磊, 张朝磊, 等. 汽车前轴用42CrMoH钢表面脱碳演变规律及控制[J]. 材料导报, 2020,34(12):127−131.
|
[4] |
Lu Junhui, Liu Jiaqi, Qiu Shengtao, et al. Determination of fatigue limit and analysis of fatigue fracture of 600 MPa automobile frame steel[J]. Science Technology and Engineering, 2020,20(1):135−140. (卢军辉, 刘家琪, 仇圣桃, 等. 600 MPa级汽车大梁钢疲劳极限确定和疲劳断裂原因分析[J]. 科学技术与工程, 2020,20(1):135−140. doi: 10.3969/j.issn.1671-1815.2020.01.021
|
[5] |
Chen Zezhong, Liu Huan, Xie Honghao, et al. Numerical simulation and process analysis of 22MnMoB steel in hot stamping for automobile rear floor crossmember[J]. Journal of Plasticity Engineering, 2020,27(2):13−20. (陈泽中, 刘欢, 谢洪昊, 等. 22MnMoB钢汽车后地板横梁热冲压成形数值模拟和工艺研究[J]. 塑性工程学报, 2020,27(2):13−20. doi: 10.3969/j.issn.1007-2012.2020.02.002
|
[6] |
Hou Yudong, Jing Cainian, Ding Xiaoyun, et al. Effect of strain rate on microstructure and properties of high strength steel for automobile[J]. Heat Treatment of Metals, 2020,45(9):71−76. (候玉栋, 景财年, 丁啸云, 等. 应变速率对汽车用高强钢组织和性能的影响[J]. 金属热处理, 2020,45(9):71−76.
|
[7] |
Zhao Tiantian, Teng Lvdan, Jin Yangfan, et al. Microstructures and mechanical properties of niobium-containing ferritic stainless steel suitable for automobile exhaust manifold[J]. Shanghai Metals, 2020,42(2):63−68. (赵天天, 滕铝丹, 金洋帆, 等. 适用于汽车排气歧管的含铌铁素体不锈钢的组织与力学性能[J]. 上海金属, 2020,42(2):63−68. doi: 10.3969/j.issn.1001-7208.2020.02.011
|
[8] |
Lin Shaokai, Dong Xuanpu, Guo Ting, et al. 3Dp printing sand casting technology for high-graded automobile stamping die casting steel parts[J]. Special Casting & Nonferrous Alloys, 2020,40(4):392−395. (林少凯, 董选普, 郭艇, 等. 高端汽车冲压模铸钢件的3Dp打印砂型铸造技术[J]. 特种铸造及有色合金, 2020,40(4):392−395.
|
[9] |
Xue Feng, Sun Yan, Zhao Nan, et al. Study on formability of HC340LA low alloy high strength sheet for automobile[J]. Hot Working Technology, 2020,49(5):46−48. (薛峰, 孙岩, 赵楠, 等. 汽车用低合金高强度HC340LA钢板的成形性能研究[J]. 热加工工艺, 2020,49(5):46−48.
|
[10] |
Wang Cunyu, Chang Ying, Zhou Fengluan, et al. M3 microstructure control theory and technology of the third-generation automotive steels with high strength and high ductility[J]. Acta Metallurgica Sinica, 2020,56(4):400−410. (王存宇, 常颖, 周峰峦, 等. 高强度高塑性第三代汽车钢的M3组织调控理论与技术[J]. 金属学报, 2020,56(4):400−410. doi: 10.11900/0412.1961.2019.00371
|
[11] |
Ye Yanxian, Yu Jiaojiao. Refining process optimization of vanadium-bearing steel 20CrMoV for automotive gear[J]. Iron Steel Vanadium Titanium, 2019,40(6):108−112. (叶燕仙, 于娇娇. 含钒汽车齿轮钢20CrMoV的精炼工艺优化[J]. 钢铁钒钛, 2019,40(6):108−112.
|