Citation: | Li Nali, Zhang Renjie. Effect of glucose content on the lithium storage performance of Li3V2(PO4)3/C cathode materials prepared by sol-gel combustion method[J]. IRON STEEL VANADIUM TITANIUM, 2023, 44(4): 41-47. doi: 10.7513/j.issn.1004-7638.2023.04.006 |
[1] |
Sun Chunwen, Rajasekhara Shreyas, Dong Youzhong, et al. Hydrothermal synthesis and electrochemical properties of Li3V2(PO4)3/C-based composites for lithium-ion batteries[J]. ACS Applied Materials & Interfaces, 2011,3(9):3772−3776.
|
[2] |
Membreño Nellymar, Park Kyusung, Goodenough John B, et al. Electrode/electrolyte interface of composite α-Li3V2(PO4)3 cathodes in a nonaqueous electrolyte for lithium ion batteries and the role of the carbon additive[J]. Chemistry of Materials, 2015,27(9):3332−3340. doi: 10.1021/acs.chemmater.5b00447
|
[3] |
Membreño Nellymar, Xiao Penghao, Park Kyu Sung, et al. In situ Raman study of phase stability of α-Li3V2(PO4)3 upon thermal and laser heating[J]. The Journal of Physical Chemistry C, 2013,117(23):11994−12002. doi: 10.1021/jp403282a
|
[4] |
Yin S C, Strobel P S, Grondey H, et al. Li2.5V2(PO4)3: A room-temperature analogue to the fast-ion conducting high-temperature γ-phase of Li3V2(PO4)3[J]. Chemistry Of Materials, 2004,16(8):1456−1465. doi: 10.1021/cm034802f
|
[5] |
Peng Yi, Tan Rou, Ma Jianmin, et al. Electrospun Li3V2(PO4)3 nanocubes/carbon nanofibers as free-standing cathodes for high-performance lithium-ion batteries[J]. Journal of Materials Chemistry A, 2019,7(24):14681−14688. doi: 10.1039/C9TA02740H
|
[6] |
Tan Huiteng, Xu Lianhua, Geng Hongbo, et al. Nanostructured Li3V2(PO4)3 cathodes[J]. Small, 2018,14(21):1800567. doi: 10.1002/smll.201800567
|
[7] |
Cui Kai, Hu Shuchun, Li Yongkui. Nitrogen-doped graphene nanosheets decorated Li3V2(PO4)3/C nanocrystals as high-rate and ultralong cycle-life cathode for lithium-ion batteries[J]. Electrochimica Acta, 2016,210:45−52. doi: 10.1016/j.electacta.2016.05.099
|
[8] |
Mohanty Debabrata, Lu Zhenlun, Hung I Ming. Effect of carbon coating on electrochemical properties of Nitrogen-doped graphene cathode synthesized by citric-acid gel method for lithium-ion batteries[J]. Journal of Applied Electrochemistry, 2023,53(5):1003−1013. doi: 10.1007/s10800-022-01828-1
|
[9] |
Chen Jian, Zhao Na, Guo Feifan. Impact of carbon coating thickness on the electrochemical properties of Li3V2(PO4)3/C composites[J]. Russian Journal of Electrochemistry, 2017,53(4):339−344. doi: 10.1134/S102319351704005X
|
[10] |
Zhou Ji, Sun Xinyu, Wang Kai. Preparation of high-voltage Li3V2(PO4)3 co-coated by carbon and Li7La3Zr2O12 as a stable cathode for lithium-ion batteries[J]. Ceramics International, 2016,42(8):10228−10236. doi: 10.1016/j.ceramint.2016.03.144
|
[11] |
Han Hui, Qiu Feng, Liu Zhentao, et al. ZrO2-coated Li3V2(PO4)3/C nanocomposite: A high-voltage cathode for rechargeable lithium-ion batteries with remarkable cycling performance[J]. Ceramics International, 2015,41(7):8779−8784. doi: 10.1016/j.ceramint.2015.03.103
|
[12] |
Liao Yuxing, Li Chao, Lou Xiaobing, et al. Carbon-coated Li3V2(PO4)3 derived from metal-organic framework as cathode for lithium-ion batteries with high stability[J]. Electrochimica Acta, 2018,271:608−616. doi: 10.1016/j.electacta.2018.03.100
|
[13] |
Chen Yueqian, Xiang Kaixiong, Zhu Yirong, et al. Porous, nitrogen-doped Li3V2(PO4)3/C cathode materials derived from oroxylum and their exceptional electrochemical properties in lithium-ion batteries[J]. Ceramics International, 2019,45(4):4980−4989. doi: 10.1016/j.ceramint.2018.11.198
|
[14] |
Sun Hongxia, Du Haoran, Yu Mengkang, et al. Vesicular Li3V2(PO4)3/C hollow mesoporous microspheres as an efficient cathode material for lithium-ion batteries[J]. Nano Research, 2019,12(8):1937−1942. doi: 10.1007/s12274-019-2461-1
|
[15] |
Lee Hwang Sheng, Ramar Vishwanathan, Kuppan Saravanan, et al. Key design considerations for synthesis of mesoporous α-Li3V2(PO4)3/C for high power lithium batteries[J]. Electrochimica Acta, 2021,372:137831. doi: 10.1016/j.electacta.2021.137831
|
[16] |
Zhang Le, Xiang Hongfa, Li Zhong, et al. Porous Li3V2(PO4)3/C cathode with extremely high-rate capacity prepared by a sol-gel-combustion method for fast charging and discharging[J]. Journal of Power Sources, 2012,203:121−125. doi: 10.1016/j.jpowsour.2011.11.082
|
[17] |
Ou Qingzhu, Tang Yan, Zhong Yanjun, et al. Submicrometer porous Li3V2(PO4)3/C composites with high rate electrochemical performance prepared by sol-gel combustion method[J]. Electrochimica Acta, 2014,137:489−496. doi: 10.1016/j.electacta.2014.04.178
|
[18] |
Taddesse Paulos, Belete Birhanu. Substitutional effect on structural, electrical and electrochemical behaviors of LiMn1.977(Ce, Cu)0.023O4 nanoparticles prepared by sol-gel combustion method[J]. Chemical Physics, 2019,522:260−266. doi: 10.1016/j.chemphys.2019.03.015
|
[19] |
Li Nali, Tong Yanwei, Yi Dawei, et al. Facile synthesis of Li3V2(PO4)3/C composite with a complex morphology and its excellent electrochemical performance as cathode material for lithium ion batteries[J]. Materials Research Express, 2019,6(11):115530. doi: 10.1088/2053-1591/ab49c1
|
[20] |
Li Nali, Yu Yong, Tong Yanwei, et al. Sc3+-doping effects on porous Li3V2(PO4)3/C cathode with superior rate performance and cyclic stability[J]. Ceramics International, 2021,47(24):34218−34224. doi: 10.1016/j.ceramint.2021.08.331
|
[21] |
Li Nali, Tong Yanwei, Yi Dawei, et al. Effect of Zr4+ doping on the morphological features and electrochemical performance of monoclinic Li3V2(PO4)3/C cathode material synthesized by an improved sol-gel combustion technique[J]. Journal of Alloys and Compounds, 2021,868:158771. doi: 10.1016/j.jallcom.2021.158771
|
[22] |
Li Ruhong, Liu Jianchao, Chen Tianrui, et al. Systematic evaluation of lithium-excess polyanionic compounds as multi-electron reaction cathodes[J]. Nanoscale, 2019,11(36):16991−17003. doi: 10.1039/C9NR05751J
|
[23] |
Yu Shicheng, Mertens Andreas, Kungl Hans, et al. Morphology dependency of Li3V2(PO4)3/C cathode material regarding to rate capability and cycle life in lithium-ion batteries[J]. Electrochimica Acta, 2017,232:310−322. doi: 10.1016/j.electacta.2017.02.136
|
[24] |
Chen Lin, Yan Bo, Xu Jing, et al. Bicontinuous structure of Li3V2(PO4)3 clustered via carbon nanofiber as high-performance cathode material of Li-ion batteries[J]. ACS Applied Materials & Interfaces, 2015,7(25):13934−13943.
|
[25] |
Yu Shicheng, Mertens Andreas, Schierholz Roland, et al. An advanced all phosphate lithium-ion battery providing high electrochemical stability, high rate capability and long-term cycling performance[J]. Journal of the Electrochemical Society, 2017,164:A370−A379. doi: 10.1149/2.1151702jes
|
[26] |
Xiong Fangyu, Tan Shuangshuang, Wei Qiulong, et al. Three-dimensional graphene frameworks wrapped Li3V2(PO4)3 with reversible topotactic sodium-ion storage[J]. Nano Energy, 2017,32:347−352. doi: 10.1016/j.nanoen.2016.12.050
|
[27] |
Guo Shuainan, Bai Ying, Geng Zhenfeng, et al. Facile synthesis of Li3V2(PO4)3 cathode material for lithium-ion battery via freeze-drying[J]. Journal of Energy Chemistry, 2019,32:159−165. doi: 10.1016/j.jechem.2018.07.011
|
[28] |
Rui Xianhong, Yan Qingyu, Skyllas Kazacos Maria, et al. Li3V2(PO4)3 cathode materials for lithium-ion batteries: A review[J]. Journal of Power Sources, 2014,258:19−38. doi: 10.1016/j.jpowsour.2014.01.126
|
[29] |
Oh Woong, Park Hyunyoung, Jin Bong-Soo, et al. Understanding the structural phase transitions in lithium vanadium phosphate cathodes for lithium-ion batteries[J]. Journal of Materials Chemistry A, 2020,8(20):10331−10336. doi: 10.1039/C9TA12435G
|
[30] |
Ruan Tingting, Lu Shengli, Lu Junyang, et al. Unraveling the intercalation chemistry of multi-electron reaction for polyanionic cathode Li3V2(PO4)3[J]. Energy Storage Materials, 2023,55:546−555. doi: 10.1016/j.ensm.2022.12.021
|
[31] |
Bi Linnan, Song Zhicui, Liu Xiaoqin, et al. Critical roles of RuO2 nano-particles in enhancing cyclic and rate performance of Lisicon Li3V2(PO4)3 cathode materials[J]. Journal of Alloys and Compounds, 2020,845:156271. doi: 10.1016/j.jallcom.2020.156271
|
[32] |
Zhang Shu, Gu Qin, Tan Shan, et al. Improved electrochemical properties of the Li3V2(PO4)3 cathode material synthesized from a V(III) precursor[J]. Journal of Alloys and Compounds, 2019,802:583−590. doi: 10.1016/j.jallcom.2019.06.240
|