Volume 44 Issue 4
Aug.  2023
Turn off MathJax
Article Contents
Xu Yanan, Wang Weiqiang, Yang Shuaikang, Wang Yinong. Research progress of biodegradable iron-based materials for vascular stents[J]. IRON STEEL VANADIUM TITANIUM, 2023, 44(4): 158-166. doi: 10.7513/j.issn.1004-7638.2023.04.023
Citation: Xu Yanan, Wang Weiqiang, Yang Shuaikang, Wang Yinong. Research progress of biodegradable iron-based materials for vascular stents[J]. IRON STEEL VANADIUM TITANIUM, 2023, 44(4): 158-166. doi: 10.7513/j.issn.1004-7638.2023.04.023

Research progress of biodegradable iron-based materials for vascular stents

doi: 10.7513/j.issn.1004-7638.2023.04.023
  • Received Date: 2023-02-20
  • Publish Date: 2023-08-30
  • Iron-based biodegradable metal material is one of the most potential materials to replace permanent vascular stents. The slow degradation rate is the main problem hindering its development. Many researchers optimized its biocompatibility, corrosion and degradation behaviors, mechanical properties and magnetic properties by adjusting its microstructure, surface treatment, alloying, and "composite" material design, aiming for the ideal iron-based biodegradable stent materials. Although the pure iron compatibility can be ensured by microstructure adjustment, its degradability improvement is limited. While, it is hard to optimize the corrosion resistance properties of pure iron matrix, despite the fact that the corrosion rate of the close-to-surface regions can be enhanced by specific surface treatments. Among these ways, the comprehensive properties of materials were optimized via "composite" materials designed by alloying. However, a great improvement is still required for the alloying materials to satisfy the properties of ideal stents. This work summarized the researches of iron-based biodegradable stent materials from the above aspects and suggestions on the future research directions were also proposed.
  • loading
  • [1]
    Ma Liyuan, Wang Zengwu, Fan Jing, et al. Summary of《China cardiovascular health and disease report 2021》[J]. Chinese Journal of Interventional Cardiology, 2022,30(7):487−496. (马丽媛, 王增武, 樊静, 等. 中国心血管健康与疾病报告2021概要[J]. 中国介入心脏病学杂志, 2022,30(7):487−496.

    Ma Liyuan, Wang Zengwu, Fan Jing, et al. Summary of《China cardiovascular health and disease report 2021》[J]. Chinese Journal of Interventional Cardiology, 2022, 30(7): 487-496
    [2]
    Daemen J, Boersma E, Flather M, et al. Long-term safety and efficacy of percutaneous coronary intervention with stenting and coronary artery bypass surgery for multivessel coronary artery disease: a meta-analysis with 5-year patient-level data from the ARTS, ERACI-II, MASS-II, and SoS trials[J]. Circulation, 2008,118(11):1146−1154. doi: 10.1161/circulationaha.107.752147
    [3]
    Serruys P W, Jaegere P D, Kiemeneij F, et al. A Comparison of balloon-expandable-stent implantation with balloon angioplasty in patients with coronary artery disease[J]. New England Journal of Medicine, 1994, 331: 489 - 495.
    [4]
    Onuma Y, Serruys P W. Bioresorbable scaffold: the advent of a new era in percutaneous coronary and peripheral revascularization[J]. Circulation, 2011,123(7):779−797. doi: 10.1161/CIRCULATIONAHA.110.971606
    [5]
    Zheng Y F, Gu X N, Witte F. Biodegradable metals[J]. Materials Science and Engineering, 2014,77:1−34. doi: 10.1016/j.mser.2014.01.001
    [6]
    Loffredo S, Hermawan H, Vedani M, et al. 20 - Absorbable metals for cardiovascular applications[M]. Niinomi M, ed. Metals for Biomedical Devices (Second Edition). Woodhead Publishing, 2019: 523-543.
    [7]
    Liu Y, Zheng Y F, Chen X H, et al. Fundamental theory of biodegradable metals—definition, criteria, and design[J]. Advanced Functional Materials, 2019,29(18):1805402. doi: 10.1002/adfm.201805402
    [8]
    Chen Q Z, Thouas G A. Metallic implant biomaterials[J]. Materials Science and Engineering, 2015,87:1−57. doi: 10.1016/j.mser.2014.10.001
    [9]
    Underwood E J. Trace elements in human and animal nutrition[J]. Soil Science, 1963, 95(4): 287.
    [10]
    Schinhammer M, Hanzi A C, Loffler J F, et al. Design strategy for biodegradable Fe-based alloys for medical applications[J]. Acta Biomaterialia, 2010,6(5):1705−1713. doi: 10.1016/j.actbio.2009.07.039
    [11]
    Peuster M, Wohlsein P, Brügmann M, et al. A novel approach to temporary stenting: Degradable cardiovascular stents produced from corrodible metal - Results 6-18 months after implantation into New Zealand white rabbits[J]. Heart, 2001,86(5):563−569. doi: 10.1136/heart.86.5.563
    [12]
    Peuster M, Hesse C, Schloo T, et al. Long-term biocompatibility of a corrodible peripheral iron stent in the porcine descending aorta[J]. Biomaterials, 2006,27(28):4955−4962. doi: 10.1016/j.biomaterials.2006.05.029
    [13]
    Ron W, Rajbabu P, Richard B, et al. Short-term effects of biocorrodible iron stents in porcine coronary arteries[J]. Journal of Interventional Cardiology, 2008,21(1):15−20. doi: 10.1111/j.1540-8183.2007.00319.x
    [14]
    Obayi C S, Tolouei R, Mostavan A, et al. Effect of grain sizes on mechanical properties and biodegradation behavior of pure iron for cardiovascular stent application[J]. Biomatter, 2016,6(1):959874. doi: 10.4161/21592527.2014.959874
    [15]
    Moravej M, Purnama A, Fiset M, et al. Electroformed pure iron as a new biomaterial for degradable stents: In vitro degradation and preliminary cell viability studies[J]. Acta Biomaterialia, 2010,6(5):1843−1851. doi: 10.1016/j.actbio.2010.01.008
    [16]
    Qi Y, Li X, He Y, et al. Mechanism of acceleration of iron corrosion by a polylactide coating[J]. ACS Applied Materials & Interfaces, 2019,11(1):202−218. doi: 10.1021/acsami.8b17125
    [17]
    Gorejova R, Orinakova R, Macko J, et al. Electrochemical behavior, biocompatibility and mechanical performance of biodegradable iron with PEI coating[J]. Journal of Biomedical Materals Research Part A, 2022,110(3):659−671. doi: 10.1002/jbm.a.37318
    [18]
    Cheng J, Huang T, Zheng Y F. Relatively uniform and accelerated degradation of pure iron coated with micro-patterned Au disc arrays[J]. Materials Science and Engineering:C, 2015,48:679−687. doi: 10.1016/j.msec.2014.12.053
    [19]
    Huang T, Zheng Y. Uniform and accelerated degradation of pure iron patterned by Pt disc arrays[J]. Scientific Reports, 2016,6:23627. doi: 10.1038/srep23627
    [20]
    Zhou J C, Yang Y Y, Alonso Frank M, et al. Accelerated degradation behavior and cytocompatibility of pure iron treated with sandblasting[J]. ACS Applied Materials & Interfaces, 2016,8(40):26482−26492. doi: 10.1021/acsami.6b07068
    [21]
    Bagherifard S, Molla M F, Kajanek D, et al. Accelerated biodegradation and improved mechanical performance of pure iron through surface grain refinement[J]. Acta Biomaterialia, 2019,98:88−102. doi: 10.1016/j.actbio.2019.05.033
    [22]
    Wang H N, Zheng Y, Li Y, et al. Improvement of in vitro corrosion and cytocompatibility of biodegradable Fe surface modified by Zn ion implantation[J]. Applied Surface Science, 2017,403:168−176. doi: 10.1016/j.apsusc.2017.01.158
    [23]
    Chen H Y, Zhang E L, Yang K. Microstructure, corrosion properties and bio-compatibility of calcium zinc phosphate coating on pure iron for biomedical application[J]. Materials Science and Engineering:C, 2014,34:201−206. doi: 10.1016/j.msec.2013.09.010
    [24]
    Zhu S, Huang N, Shu H, et al. Corrosion resistance and blood compatibility of lanthanum ion implanted pure iron by MEVVA[J]. Applied Surface Science, 2009,256(1):99−104. doi: 10.1016/j.apsusc.2009.07.082
    [25]
    Zhu S F, Huang N, Xu L, et al. Biocompatibility of Fe–O films synthesized by plasma immersion ion implantation and deposition[J]. Surface and Coatings Technology, 2009,203(10):1523−1529. doi: 10.1016/j.surfcoat.2008.11.033
    [26]
    Hermawan H, Dubé M D. Development of degradable Fe-35Mn alloy for biomedical application[J]. Advanced Materials Research, 2006,15-17:107−112. doi: 10.4028/www.scientific.net/AMR.15-17.107
    [27]
    Hermawan H, Purnama A, Dube D, et al. Fe-Mn alloys for metallic biodegradable stents: degradation and cell viability studies[J]. Acta Biomaterialia, 2010,6(5):1852−1860. doi: 10.1016/j.actbio.2009.11.025
    [28]
    Capek J, Kubasek J, Vojtech D, et al. Microstructural, mechanical, corrosion and cytotoxicity characterization of the hot forged FeMn30(%) alloy[J]. Materials Science and Engineering:C, 2016,58:900−908. doi: 10.1016/j.msec.2015.09.049
    [29]
    Traverson M, Heiden M, Stanciu L A, et al. In Vivo evaluation of biodegradability and biocompatibility of Fe30Mn alloy[J]. Veterinary and Comparative Orthopaedics and Traumatology, 2018,31(1):10−16. doi: 10.3415/VCOT-17-06-0080
    [30]
    Sotoudehbagha P, Sheibani S, Khakbiz M, et al. Novel antibacterial biodegradable Fe-Mn-Ag alloys produced by mechanical alloying[J]. Materials Science and Engineering:C, 2018,88:88−94. doi: 10.1016/j.msec.2018.03.005
    [31]
    Niendorf T, Brenne F, Hoyer P, et al. Processing of new materials by additive manufacturing: Iron-based alloys containing silver for biomedical applications[J]. Metallurgical and Materials Transactions A, 2015,46(7):2829−2833. doi: 10.1007/s11661-015-2932-2
    [32]
    Hong D, Chou D T, Velikokhatnyi O I, et al. Binder-jetting 3D printing and alloy development of new biodegradable Fe-Mn-Ca/Mg alloys[J]. Acta Biomaterialia, 2016,45:375−386. doi: 10.1016/j.actbio.2016.08.032
    [33]
    Xu W, Lu X, Tan L, et al. Study on properties of a novel biodegradable Fe-30Mn-1C alloy[J]. Acta Metallurgica Sinica, 2011,47(10):1342−1347. doi: 10.3724/SP.J.1037.2011.00258
    [34]
    Harjanto S, Pratesa Y, Suharno B, et al. Corrosion behavior of Fe-Mn-C alloy as degradable materials candidate fabricated via powder metallurgy process[J]. Advanced Materials Research, 2012: 386-389.
    [35]
    Liu B, Zheng Y F, Ruan L Q. In vitro investigation of Fe30Mn6Si shape memory alloy as potential biodegradable metallic material[J]. Materials Letters, 2011,65(3):540−543. doi: 10.1016/j.matlet.2010.10.068
    [36]
    Drevet R, Zhukova Y, Kadirov P, et al. Tunable corrosion behavior of calcium phosphate coated Fe-Mn-Si alloys for bone implant applications[J]. Metallurgical and Materials Transactions A, 2018,49(12):6553−6560. doi: 10.1007/s11661-018-4907-6
    [37]
    Hufenbach J, Wendrock H, Kochta F, et al. Novel biodegradable Fe-Mn-C-S alloy with superior mechanical and corrosion properties[J]. Materials Letters, 2017,186:330−333. doi: 10.1016/j.matlet.2016.10.037
    [38]
    Hufenbach J, Kochta F, Wendrock H, et al. S and B microalloying of biodegradable Fe-30Mn-1C - effects on microstructure, tensile properties, in vitro degradation and cytotoxicity[J]. Materials & Design, 2018,142:22−35. doi: 10.1016/j.matdes.2018.01.005
    [39]
    Venezuela J, Dargusch M S. Addressing the slow corrosion rate of biodegradable Fe-Mn: Current approaches and future trends[J]. Current Opinion in Solid State and Materials Science, 2020,24(3):100822. doi: 10.1016/j.cossms.2020.100822
    [40]
    Lin W, Zhang G, Cao P, et al. Cytotoxicity and its test methodology for a bioabsorbable nitrided iron stent[J]. Journal of Biomedical Materials Researcheh, 2015,103(4):764−776. doi: 10.1002/jbm.b.33246
    [41]
    Lin W, Qin L, Qi H, et al. Long-term in vivo corrosion behavior, biocompatibility and bioresorption mechanism of a bioresorbable nitrided iron scaffold[J]. Acta Biomaterialia, 2017,54:454−468. doi: 10.1016/j.actbio.2017.03.020
    [42]
    Wang H, Zheng Y, Liu J, et al. In vitro corrosion properties and cytocompatibility of Fe-Ga alloys as potential biodegradable metallic materials[J]. Materials Science and Engineering:C, 2017,71:60−66. doi: 10.1016/j.msec.2016.09.086
    [43]
    Capek J, Msallamova S, Jablonska E, et al. A novel high-strength and highly corrosive biodegradable Fe-Pd alloy: Structural, mechanical and in vitro corrosion and cytotoxicity study[J]. Materials Science and Engineering:C, 2017,79:550−562. doi: 10.1016/j.msec.2017.05.100
    [44]
    Mostavan A, Paternoster C, Tolouei R, et al. Effect of electrolyte composition and deposition current for Fe/Fe-P electroformed bilayers for biodegradable metallic medical applications[J]. Materials Science and Engineering:C, 2017,70(1):195−206. doi: 10.1016/j.msec.2016.08.026
    [45]
    Liu B, Zheng Y F. Effects of alloying elements (Mn, Co, Al, W, Sn, B, C and S) on biodegradability and in vitro biocompatibility of pure iron[J]. Acta Biomaterialia, 2011,7(3):1407−1420. doi: 10.1016/j.actbio.2010.11.001
    [46]
    Xu Y N, Wang W Q, Yu F, et al. Effects of pulse frequency and current density on microstructure and properties of biodegradable Fe-Zn alloy[J]. Journal of Materials Research and Technology, 2022,18:44−58. doi: 10.1016/j.jmrt.2022.02.096
    [47]
    Xu Y N, Wang W Q, Yu F Y, et al. The enhancement of mechanical properties and uniform degradation of electrodeposited Fe-Zn alloys by multilayered design for biodegradable stent applications[J]. Acta Biomaterialia, 2023. https://doi.org/10.1016/j.actbio.2023.02.029.
    [48]
    Zheng J F, Xi Z W, Li Y, et al. Long-term safety and absorption assessment of a novel bioresorbable nitrided iron scaffold in porcine coronary artery[J]. Bioactive Materials, 2022,17:496−505. doi: 10.1016/j.bioactmat.2022.01.005
    [49]
    Zheng J F, Qiu H, Tian Y, et al. Preclinical evaluation of a novel sirolimus-eluting iron bioresorbable coronary scaffold in porcine coronary artery at 6 months[J]. JACC:Cardiovascular Interventions, 2019,12(3):245−255. doi: 10.1016/j.jcin.2018.10.020
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(2)

    Article Metrics

    Article views (431) PDF downloads(45) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return