| Citation: | Xu Haijian, Han Chufei, Guo Cheng, Long Shan, Tian Yongjiu, Sha Xiaochun. Effect of heating temperature on the mechanical properties and microstructures of X80M pipeline steels[J]. IRON STEEL VANADIUM TITANIUM, 2024, 45(1): 139-144. doi: 10.7513/j.issn.1004-7638.2024.01.020 |
| [1] |
Wang Zhiyong, Li Shaopo, Li Qun, et al. Research on development of low-cost X80 pipeline steel[J]. China Metallurgy, 2016,26(11):64−68. (王志勇, 李少坡, 李群, 等. 经济型X80管线钢的研制开发[J]. 中国冶金, 2016,26(11):64−68. doi: 10.13228/j.boyuan.issn1006-9356.20160067
WANG Zhi-yong, LI Shao-po, LI Qun, et al. Research on Development of Low-cost X80 pipeline steel[J]. China Metallurgy, 2016, 26(11): 64-68. doi: 10.13228/j.boyuan.issn1006-9356.20160067
|
| [2] |
Tsuyama S, Nakamichi H, Yamada K, et al. Effects of distribution and the formation process of MA on deformation and toughness of high strength linepipe steel[J]. ISIJ International, 2013,53:317. doi: 10.2355/isijinternational.53.317
|
| [3] |
Zhai Dongyu, Du Haijun, Wu Junping, et al. Development of X80M hot-rolled steel plate for LSAW pipe[J]. Iron Steel Vanadium Titanium, 2021,42(1):131−138. (翟冬雨, 杜海军, 吴俊平, 等. X80M 直缝埋弧焊管用热轧钢板开发[J]. 钢铁钒钛, 2021,42(1):131−138.
ZHAI Dong-yu, DU Hai-jun, WU Jun-ping, et al. Development of X80 M hot-rolled steel plate for LSAW pipe[J]. Iron Steel Vanadium Titanium, 2021, 42(1): 131-138
|
| [4] |
Bott I, Souza L, Teixeira J, et al. High-strength steel development for pipelines: A brazilian perspective[J]. Metallurgical and Materials Transaction A, 2005, 36: 443-454.
|
| [5] |
Kang M, Kim H, Lee S. Effect of dynamic strain hardening exponent on abnormal cleavage fracture occurring during drop weight tear test of API X70 and X80 linepile steels[J]. Metall. Mater. Trans A, 2014,45(2):68.
|
| [6] |
Zheng Lei, Fu Junyan. Recent development of high performance pipeline steel[J]. Iron and Steel, 2006,41(10):1−10. (郑磊, 付俊岩. 高等级管线钢的发展现状[J]. 钢铁, 2006,41(10):1−10. doi: 10.3321/j.issn:0449-749X.2006.10.001
ZGENG Lei, FU Jun-yan. Recent Development of High Performance Pipeline Steel[J]. Iron and Steel, 2006, 41(10): 1-10. doi: 10.3321/j.issn:0449-749X.2006.10.001
|
| [7] |
Tian Y, Li Q, Wang Z D, et al. Effects of ultra fast cooling on microstructure and mechanical properties of pipeline steels[J]. J Mater. Eng. Perform, 2015, 24: 3307-3314.
|
| [8] |
Hong Liang, Zuo Xiurong, Ji Yinglun, et al. Fracture behavior of thick X80 pipeline steel plates at −25 ℃[J]. Chinese Journal of Materials Research, 2018,32(1):33−41. (洪良, 左秀荣, 姬颍伦, 等. 厚规格X80管线钢低温断裂行为研究[J]. 材料研究学报, 2018,32(1):33−41.
HONG Liang, ZUO Xiu-rong, JI Ying-lun, et al. Fracture behavior of thick X80 pipeline steel plates at −25 ℃[J]. Chinese Journal of Materials Research, 2018, 32(1): 33-41.
|
| [9] |
Shao Chunjuan, Zhen Fan, Zhang Jiming, et al. Effect of sample thinning on DWTT property of heavy wall X80 steel[J]. Journal of Iron and Steel Research, 2020,32(6):497−504. (邵春娟, 镇凡, 张继明, 等. 试样减薄对大壁厚 X80 级管线钢落锤性能的影响[J]. 钢铁研究学报, 2020,32(6):497−504.
SHAO Chun-juan, ZHEN Fan, ZHANG Ji-ming, et al. Effect of sample thinning on DWTT property of heavy wall X80 steel[J]. Journal of Iron and Steel Research, 2020, 32(6): 497-504.
|
| [10] |
Zhang Shuai, Ren Yi, Wang Shuang, et al. Effect of hot-rolling process on recrystallization and microstructure of X80-grade steel for thick-walled pipeline[J]. Shanghai Metals, 2018,40(6):55−59. (张帅, 任毅, 王爽, 等. 热轧工艺对X80级厚壁管线用钢再结晶和微观组织的影响[J]. 上海金属, 2018,40(6):55−59.
ZHANG Shuai, REN Yi, WANG Shuang, et al. Effect of hot-rolling process on recrystallization and microstructure of X80-grade steel for thick-walled pipeline[J]. Shanghai Metals, 2018, 40(6): 55-59.
|
| [11] |
Zhang Haozhen, Zhang Chuanguo, Sun Leilei. Effect of microstructure on DWTT properties of thick-walled high strength pipeline steels[J]. Hot Working Technology, 2021,50(24):25−31. (张豪臻, 章传国, 孙磊磊. 显微组织对厚规格高强度管线钢DWTT性能的影响[J]. 热加工工艺, 2021,50(24):25−31. doi: 10.14158/j.cnki.1001-3814.20201046
ZHANG Hao-zhen, ZHANG Chuang-guo, SUN Lei-lei. Effect of microstructure on DWTT properties of thick-walled high strength pipeline steels[J]. Hot Working Technology, 2021, 50(24): 25-31. doi: 10.14158/j.cnki.1001-3814.20201046
|