| Citation: | Zhang Zhao, Pei Binghong, Feng Xu, Xin Ruishan, Guo Xiaodong, Xiao Dongping, Zhou Yang. Study on the high-temperteraure tensile property and damage behavior in GH4141 superalloy[J]. IRON STEEL VANADIUM TITANIUM, 2024, 45(1): 152-157. doi: 10.7513/j.issn.1004-7638.2024.01.022 |
| [1] |
Shen Daogui. GH141 high strength superalloy[J]. Aerospace Material and Technology, 1985,(6):5−10. (沈道贵. GH141高强度高温合金[J]. 宇航材料工艺, 1985,(6):5−10.
Shen Daogui. GH141 high strength superalloy[J]. Aerospace Material and Technology, 1985(6): 5-10.
|
| [2] |
Rao C V, Srinivas N C S, Sastry G V S, et al. Dynamic strain aging, deformation and fracture behaviour of the nickel base superalloy Inconel 617[J]. Materials Science and Engineering:A, 2019,742:44−60. doi: 10.1016/j.msea.2018.10.123
|
| [3] |
Prasad K, Sarkar R, Ghosal P, et al. Tensile deformation behaviour of forged disc of IN 718 superalloy at 650 ℃[J]. Materials & Design, 2010,31(9):4502−4507.
|
| [4] |
Jena P S M, Sahu J K. Serrated flow in nickel base super alloy 720 Li at 350 and 450 ℃: Effect of chromium and cobalt segregation at dislocation core[J]. Materials Letters, 2022,321:132425. doi: 10.1016/j.matlet.2022.132425
|
| [5] |
Xiao Dongping, Zhou Yang, Fu Jianhui, et al. Solidification segregation characteristic and homogenization treatment of GH141 superalloy[J]. Heat Treatment of Metals, 2022,47(5):141−147. (肖东平, 周扬, 付建辉, 等. GH141合金的凝固偏析特性及均匀化处理[J]. 金属热处理, 2022,47(5):141−147.
Xiao Dongping, Zhou Yang, Fu Jianhui, et al. Solidification segregation characteristic and homogenization treatment of GH141 superalloy[J]. Heat Treatment of Metals, 2022, 47(5): 141-147.
|
| [6] |
Xiao Dongping, Fu Jianhui, Chen Qi, et al. Hot deformation behavior and microstructure evolution of GH4141 superalloy[J]. Journal of Plasticity Engineering, 2022,29(9):157−164. (肖东平, 付建辉, 陈琦, 等. GH4141高温合金热变形行为及组织演变[J]. 塑性工程学报, 2022,29(9):157−164.
Xiao Dongping, Fu Jianhui, Chen Qi, et al. Hot deformation behavior and microstructure evolution of GH4141 superalloy[J]. Journal of Plasticity Engineering, 2022, 29(9): 157-164.
|
| [7] |
Xiao Dongping, Wang Fu, Zhou Yang, et al. Grain growth behavior of GH4141 superalloy during solution treatment process[J]. Heat Treatment of Metals, 2023,48(3):221−225. (肖东平, 王福, 周扬, 等. GH4141高温合金固溶处理过程中的晶粒长大行为[J]. 金属热处理, 2023,48(3):221−225.
Xiao Dongping, Wang Fu, Zhou Yang, et al. Grain growth behavior of GH4141 superalloy during solution treatment process[J]. Heat Treatment of Metals, 2023, 48(3): 221-225.
|
| [8] |
李宁, 李爱民, 王艾竹, 等. 固溶处理冷却速度对GH4141合金组织及性能的影响[C]// 第十三届中国高温合金年会论文集. 北京: 冶金工业出版社, 2015: 46-49
Li Ning, Li Aimin, Wang Aizhu, et al.The effect of different cooling speeds after solution treatment on the microstructure an properties of GH4141 alloy[C]//Proceedings of the Thirteenth China Superalloy Annual Conference. Beijing: Metallurgical Industry Press, 2015: 46-49.
|
| [9] |
Yu Huichen, Xie Shishu, Lü Junying, et al. Microstructures control in Ni-base superalloy GH141[J]. Journal of Materials Engineering, 2003,(5):7−10. (于慧臣, 谢世殊, 吕俊英, 等. GH141合金的显微组织控制[J]. 材料工程, 2003,(5):7−10.
Yu Huichen, Xie Shishu, Lv Junying, et al. Microstructures control in Ni-base superalloy GH141[J]. Journal of Materials Engineering, 2003 (5): 7-10.
|
| [10] |
Gopinath K, Gogia A K, Kamat S V, et al. Dynamic strain ageing in Ni-base superalloy 720Li[J]. Acta Materialia, 2009,57(4):1243−1253. doi: 10.1016/j.actamat.2008.11.005
|
| [11] |
Rodriguez P, Venkadesan S. Serrated plastic flow revisited[J]. Solid State Phenomena, 1995,42:257−266.
|
| [12] |
Liu Yajing, Yang Hongcai, Yuan Ying. Carbides and γ′ precipitates in GH141[J]. Special Steel, 1996,17(6):12−16. (刘雅晶, 杨洪才, 袁英. GH141合金碳化物及γ′的沉淀[J]. 特殊钢, 1996,17(6):12−16.
Liu Yajing, Yang Hongcai, Yuan Ying. Carbides and γ′ precipitates in GH141[J]. Special Steel, 1996, 17(6): 12-16.
|
| [13] |
Goodfellow A J. Strengthening mechanisms in polycrystalline nickel-based superalloys[J]. Materials Science and Technology, 2018,34(15):1793−1808. doi: 10.1080/02670836.2018.1461594
|
| [14] |
Wu X, Yang M, Yuan F, et al. Heterogeneous lamella structure unites ultrafine-grain strength with coarse-grain ductility[J]. Proceedings of the National Academy of Sciences, 2015,112(47):14501−14505. doi: 10.1073/pnas.1517193112
|
| [15] |
Max B, San Juan J, Nó M L, et al. Atomic species associated with the Portevin–Le Chatelier effect in superalloy 718 studied by mechanical spectroscopy[J]. Metallurgical and Materials Transactions A, 2018,49(6):2057−2068. doi: 10.1007/s11661-018-4579-2
|