| Citation: | Luo Kun, Geng Naitao, You Yanjun, Peng Li, Wang Ying, Dong Entao. Optimization of VAR melting process of TB9 titanium alloy based on numerical simulation[J]. IRON STEEL VANADIUM TITANIUM, 2024, 45(3): 25-32. doi: 10.7513/j.issn.1004-7638.2024.03.004 |
| [1] |
Shi W, Dong L, Zhang X, et al. Simulation and experimental study of the hole-making process of Ti-6Al-4V titanium alloy for selective laser melting[J]. Journal of Manufacturing Processes, 2023,106:223−239. doi: 10.1016/j.jmapro.2023.10.004
|
| [2] |
Xu Jianqing, Tan Jing. Study on numerical model of high temperature compression behavior of forged TB9 titanium alloy[J]. Foundry Technology, 2018,39(6):1305−1308. (徐健清, 谭静. 锻态TB9钛合金高温压缩行为数值模型研究[J]. 铸造技术, 2018, 39(6): 1305−1308.
Xu Jianqing, Tan Jing. Study on numerical model of high temperature compression behavior of forged TB9 titanium alloy[J]. Foundry Technology, 2018,39(6):1305−1308.
|
| [3] |
Yang X, Li W, Fu Y, et al. Finite element modelling for temperature, stresses and strains calculation in linear friction welding of TB9 titanium alloy[J]. Journal of Materials Research and Technology, 2019,8(5):4797−4818. doi: 10.1016/j.jmrt.2019.08.026
|
| [4] |
Jin Xiaochao, Xu Qipeng, Qiu Ji, et al. A strain rate‐dependent constitutive model for asymmetric hardening behavior of TB9 titanium alloy[J]. Advanced Engineering Materials, 2022,24(12):2200545. doi: 10.1002/adem.202200545
|
| [5] |
Liu Le, Xu Qipeng, Hou Cheng, et al. Strain rate effect of yield strength of new TB9 titanium alloy[J]. Science Technology and Engineering, 2022,22(35):15470−15476. (刘乐, 许琦鹏, 侯成, 等. 新型TB9钛合金屈服强度的应变率效应[J]. 科学技术与工程, 2022,22(35):15470−15476.
Liu Le, Xu Qipeng, Hou Cheng, et al. Strain rate effect of yield strength of new TB9 titanium alloy[J]. Science Technology and Engineering, 2022, 22(35): 15470−15476.
|
| [6] |
Li Xiong, Pang Kechang, Guo Hua, et al. Melting technology of wrought Ti and Ti alloy[J]. The Chinese Journal of Nonferrous Metals, 2010,20(S1):906−913. (李雄, 庞克昌, 郭华, 等. 变形钛及钛合金熔炼技术[J]. 中国有色金属学报, 2010,20(S1):906−913.
Li Xiong, Pang Kechang, Guo Hua, et al. Melting technology of wrought Ti and Ti alloy[J]. The Chinese Journal of Nonferrous Metals, 2010, 20(S1): 906−913.
|
| [7] |
Zagrebelnyy D, Krane M J M. Segregation development in multiple melt vacuum arc remelting[J]. Metallurgical and Materials Transactions B, 2009,40:281−288. doi: 10.1007/s11663-008-9163-5
|
| [8] |
Jing Zhenquan, Sun Yanhui, Liu Rui, et al. Effect of vacuum arc remelting process parameters on macrosegregation in TC4 titanium alloy[J]. Rare Metal Materials and Engineering, 2023,52(3):815−822.
|
| [9] |
Yamanaka A, Ichihashi H. Dissolution of refractory elements to titanium alloy in var[J]. ISIJ International, 1992,32(5):600−606. doi: 10.2355/isijinternational.32.600
|
| [10] |
Dong Hequan, Guo Ziming, Mao Xiemin, et al. Prospect of development trend of melting technology of titanium and/or its alloys with high efficiency and low energy consumption[J]. Materials Review, 2008,22(5):68−73. (董和泉, 国子明, 毛协民, 等. 低能耗节约型钛及钛合金熔炼技术的发展趋势[J]. 材料导报, 2008,22(5):68−73.
Dong Hequan, Guo Ziming, Mao Xiemin, et al. Prospect of development trend of melting technology of titanium and/or its alloys with high efficiency and low energy consumption[J]. Materials Review, 2008, 22(5): 68−73.
|
| [11] |
Liu Xibo, Wang Shujun, Jia Xiangya, et al. Research on the preparation of TC4 titanium alloy plate by the ingot with bad composition[J]. Titanium Industry Progress, 2017,34(1):29−32. (刘喜波, 王树军, 贾祥亚, 等. 利用成分不良的TC4钛合金铸锭制备合格板材的工艺研究[J]. 钛工业进展, 2017,34(1):29−32.
Liu Xibo, Wang Shujun, Jia Xiangya, et al. Research on the preparation of TC4 titanium alloy plate by the ingot with bad composition[J]. Titanium Industry Progress, 2017, 34(1): 29−32.
|
| [12] |
Li Mingyu, Yang Shufeng, Liu Wei, et al. A review on segregation and control of titanium alloy during vacuum arc remelting process[J]. China Metallurgy, 2023, 33(9): 1-10,18. (李明宇, 杨树峰, 刘威, 等. 真空自耗熔炼钛合金的偏析缺陷及控制研究进展[J]. 中国冶金, 2023, 33(9): 1−10, 18.
Li Mingyu, Yang Shufeng, Liu Wei, et al. A review on segregation and control of titanium alloy during vacuum arc remelting process[J]. China Metallurgy, 2023, 33(9): 1-10,18.
|
| [13] |
Cen M, Liu Y, Chen X, et al. Inclusions in melting process of titanium and titanium alloys[J]. China Foundry, 2019,16(4):223−231. doi: 10.1007/s41230-019-9046-1
|
| [14] |
Karimi-Sibaki E, Kharicha A, Vakhrushev A, et al. Numerical modeling and experimental validation of the effect of arc distribution on the as-solidified Ti64 ingot in vacuum arc remelting (VAR) process[J]. Journal of Materials Research and Technology, 2022,19:183−193. doi: 10.1016/j.jmrt.2022.05.036
|
| [15] |
Huang Liqing, Wu Jingyang, Guo Jie, et al. Effect of self-induced magnetic field on liquid flow and segregation during VAR process for titanium alloys[J]. Iron Steel Vanadium Titanium, 2023,44(4):55−61, 84. (黄立清, 吴京洋, 郭杰, 等. 钛合金VAR过程中自感电磁场对流场与偏析行为的影响[J]. 钢铁钒钛, 2023,44(4):55−61, 84.
Huang Liqing, Wu Jingyang, Guo Jie, et al. Effect of self-induced magnetic field on liquid flow and segregation during VAR process for titanium alloys[J]. Iron Steel Vanadium Titanium, 2023, 44(4): 55−61, 84.
|
| [16] |
Jing Zhenquan, Sun Yanhui, Chen Lian, et al. Numerical simulation of current, magnetic field and electromagnetic force in vacuum arc remelting of titanium alloy[J]. Rare Metal Materials and Engineering, 2023,52(6):1994−2001.
|
| [17] |
Fu Hangtao, Wang Kaixuan, Zhao Xiaohua, et al. Numerical simulation analysis of inclusion evolution during VAR melting of TC4 titanium alloy[J]. Foundry Technology, 2021,42(9):770−773. (付航涛, 王凯旋, 赵小花, 等. TC4钛合金VAR熔炼过程中夹杂物演变的数值模拟分析[J]. 铸造技术, 2021,42(9):770−773.
Fu Hangtao, Wang Kaixuan, Zhao Xiaohua, et al. Numerical simulation analysis of inclusion evolution during VAR melting of TC4 titanium alloy[J]. Foundry Technology, 2021, 42(9): 770−773.
|
| [18] |
Wen Hao, Zheng Yabo, Chen Feng, et al. Research on melting technology of TC2 titanium alloy ingot depend on MeltFlow-VAR[J]. World Nonferrous Metals, 2022(14):12−15. (文豪, 郑亚波, 陈峰, 等. 基于MeltFlow-VAR的TC2钛合金铸锭熔炼工艺研究[J]. 世界有色金属, 2022(14):12−15.
Wen Hao, Zheng Yabo, Chen Feng, et al. Research on melting technology of TC2 titanium alloy ingot depend on MeltFlow-VAR[J]. World Nonferrous Metals, 2022(14): 12−15.
|
| [19] |
Zhao Xiaohua, Wang Jincheng, Liu Peng, et al. Effect of electrode block’s mixing uniformity on titanium alloy ingot’s composition[J]. Titanium Industry Progress, 2021,38(4):1−4. (赵小花, 王锦程, 刘鹏, 等. 钛合金电极块混料均匀性对铸锭成分的影响[J]. 钛工业进展, 2021,38(4):1−4.
Zhao Xiaohua, Wang Jincheng, Liu Peng, et al. Effect of electrode block’s mixing uniformity on titanium alloy ingot’s composition[J]. Titanium Industry Progress, 2021, 38(4): 1−4.
|
| [20] |
Guo Jie, Huang Liqing, Wu Jingyang, et al. Evolution of macrosegregation during three-stage vacuum arc remelting of titanium alloys[J/OL]. Acta Metallurgica Sinica, 2023. DOI: 10.11900/0412.1961.2022.00544 (郭杰, 黄立清, 吴京洋, 等. 钛合金三次真空自耗电弧熔炼过程中的宏观偏析传递行为[J/OL]. 金属学报, 2023. DOI: 10.11900/0412.1961.2022.00544
Guo Jie, Huang Liqing, Wu Jingyang, et al. Evolution of macrosegregation during three-stage vacuum arc remelting of titanium alloys[J/OL]. Acta Metallurgica Sinica, 2023. DOI: 10.11900/0412.1961.2022.00544
|