| Citation: | He Tongzheng, Chen Yuyong, Wu Jingxi, Luo Guojun, Shen Xuanjin, Tang Liying. Optimization of the investment casting process and defect control for variable cross−section components of TC4 alloy[J]. IRON STEEL VANADIUM TITANIUM, 2024, 45(3): 46-54. doi: 10.7513/j.issn.1004-7638.2024.03.007 |
| [1] |
Cui C X, Hu B M, Zhao L, et al. Ti−based alloy production technology, market prospects and industry development[J]. Materials & Design, 2011,32(3):1684−1691.
|
| [2] |
Hou Z Q, Li B H, Feng G W, et al. Development and application of Ti−based alloy casting technologies in the field of aerospace[J]. Aerospace Shanghai (Chinese & English), 2022,39(1):1−14.
|
| [3] |
Shao H, Li Y, Zhao P, et al. Numerical simulation of centrifugal casting process of large thin−wall Ti alloy casting[J]. Materials Science Forum, 2016,850:469−481. doi: 10.4028/www.scientific.net/MSF.850.469
|
| [4] |
Suzuki K, Yao M. Simulation of mold filling and solidification during centrifugal precision casting of Ti−6Al−4V alloy[J]. Metals and Materials International, 2004,10(1):33−38. doi: 10.1007/BF03027361
|
| [5] |
Jia Y, Xiao S L, Tian J, et al. Modeling of TiAl alloy grating by investment casting[J]. Metals, 2015,5:2328−2339. doi: 10.3390/met5042328
|
| [6] |
Xiong C, Ma Y C, Chen B, et al. Modeling of filling and solidification process for TiAl exhaust valves during suction casting[J]. Acta Metallurgica Sinica (English Letters), 2013,26:33−48. doi: 10.1007/s40195-011-0503-0
|
| [7] |
Shao Heng. Numerical simulation of centrifugal investment casting of large thin−wall complex Ti−6Al−4V castings[D]. Beijing: Tsinghua University, 2017. (邵珩. 大型复杂薄壁Ti−6Al−4V合金铸件离心熔模铸造过程数值模拟[D]. 北京: 清华大学, 2017.
Shao Heng. Numerical simulation of centrifugal investment casting of large thin−wall complex Ti−6Al−4V castings[D]. Beijing: Tsinghua University, 2017.
|
| [8] |
Yang Liang. Composition optimization and investment casting of cast high Nb−TiAl alloy[D]. Beijing: University of Science and Technology Beijing, 2015. (杨亮. 铸造高Nb−TiAl合金成分优化及其精密铸造工艺研究[D]. 北京: 北京科技大学, 2015.
Yang Liang. Composition optimization and investment casting of cast high Nb−TiAl alloy[D]. Beijing: University of Science and Technology Beijing, 2015.
|
| [9] |
He T, Chen Y Y. Influence of mold design on shrinkage porosity of Ti−6Al−4V alloy ingots[J]. Metals, 2022,12:2122. doi: 10.3390/met12122122
|
| [10] |
Wang J Q, Fu P X, Liu H W, et al. Shrinkage porosity criteria and optimized design of a 100−ton 30Cr2Ni4MoV forging ingot[J]. Materials & Design, 2012,35:446−456.
|
| [11] |
Jia Yi. The effects of B and Y on microstructure and properties of TiAl alloy and investment casting of TiAl alloy[D]. Harbin: Harbin Institute of Technology, 2016. (贾燚. 硼及钇对钛铝合金组织性能的影响及精密铸造工艺研究[D]. 哈尔滨: 哈尔滨工业大学, 2016.
Jia Yi. The effects of B and Y on microstructure and properties of TiAl alloy and investment casting of TiAl alloy[D]. Harbin: Harbin Institute of Technology, 2016.
|
| [12] |
Yang L, Chai L H, Zhang L Q, et al. Numerical simulation and process optimization of investment casting of the blades for high Nb containing TiAl alloy[J]. Materials Science Forum, 2013,747:105−110.
|
| [13] |
Liu X J, Hao Z J, Huang M. Optimization of vacuum counter−pressure casting process for an aluminum alloy casing using numerical simulation and defect recognition techniques[J]. The International Journal of Advanced Manufacturing Technology, 2020,107:2783−2795. doi: 10.1007/s00170-020-05018-1
|
| [14] |
Yang J R, Wang H, Wu Y L, et al. Numerical calculation and experimental evaluation of counter−gravity investment casting of Ti−48Al−2Cr−2Nb alloy[J]. The International Journal of Advanced Manufacturing Technology, 2018,96:3295−3309. doi: 10.1007/s00170-018-1784-5
|
| [15] |
Brotzu A, Felli F, Mondal A, et al. Production issues in the manufacturing of TiAl turbine blades by investment casting[J]. Procedia Structural Integrity, 2020,25:79−87. doi: 10.1016/j.prostr.2020.04.012
|
| [16] |
Wu J X, Chen Y Y, Du Z M, et al. Modeling of investment casting of Ti48Al48Cr2Nb2 (at%) alloy air rudder skeleton[J]. International Journal of Metalcasting, 2023,17:2022−2016.
|
| [17] |
Tian J, Chen Y F, Xiao S L, et al. Influence of pouring temperature and mold preheating temperature on investment casting of TiAl[C]// Proceedings of 69th World Foundry Congress. Hangzhou: World Foundry Organization, 2010.
|
| [18] |
Jia L M, Xu D M, Li M, et al. Casting defects of Ti−6Al−4V alloy in vertical centrifugal casting processes with graphite molds[J]. Metals and Materials International, 2012,18(1):55−61. doi: 10.1007/s12540-012-0007-0
|
| [19] |
Liu J G, Yang Lei, Fang X G, et al. Numerical simulation and optimization of shell mould casting process for leaf spring bracket[J]. China Foundry, 2020,17:35−41. doi: 10.1007/s41230-020-9089-3
|
| [20] |
Dahle A K, Karlsen S, Arnberg L. Effect of grain refinement on the fluidity of some binary Al−Cu and Al−Mg alloys[J]. International Journal of Cast Metals Research, 1996,9:103−112. doi: 10.1080/13640461.1996.11819649
|
| [21] |
Wang J H, Guo X L, Wang L Q, et al. The influence of B4C on the fluidity of Ti−6Al−4V−xB4C composites[J]. Materials Transactions, 2014,55(9):1367−1371. doi: 10.2320/matertrans.M2014142
|
| [22] |
Yang L, Chai L H, Liang Y F, et al. Numerical simulation and experimental verification of gravity and centrifugal investment casting low pressure turbine blades for high Nb−TiAl alloy[J]. Intermetallics, 2015,66:149−155. doi: 10.1016/j.intermet.2015.07.006
|
| [23] |
Cabibbo M, Zherebtsov S, Mironov S, et al. Loss of coherency and interphase α/β angular deviation from the Burgers orientation relationship in a Ti−6Al−4V alloy compressed at 800 ℃[J]. Journal of Materials Science, 2012,48(3):1100−1110.
|
| [24] |
Yang J H, Xiao S L, Chen Y Y, et al. Effects of nano−Y2O3 addition on the microstructure evolution and tensile properties of a near−α titanium alloy[J]. Materials Science & Engineering A, 2019,761:137977.
|
| [25] |
Zhang Shouyin. Investigation of solidification behavior and microstructure evolution in ZTC4 alloys[D]. Xi,an: Northwestern Polytechnical University, 2016. (张守银. ZTC4钛合金凝固行为及组织演化研究[D]. 西安: 西北工业大学, 2016.
Zhang Shouyin. Investigation of solidification behavior and microstructure evolution in ZTC4 alloys[D]. Xi,an: Northwestern Polytechnical University, 2016.
|
| [26] |
Yang Jianhui. Research on deformation behavior and microstructure and mechanical properties of (TiB+TiC+Y2O3)/α−Ti composites[D]. Harbin: Harbin Institute of Technology, 2020. (杨建辉. (TiB+TiC+Y2O3)/α−Ti 复合材料变形行为及组织性能研究[D]. 哈尔滨: 哈尔滨工业大学, 2020.
Yang Jianhui. Research on deformation behavior and microstructure and mechanical properties of (TiB+TiC+Y2O3)/α−Ti composites[D]. Harbin: Harbin Institute of Technology, 2020.
|