| Citation: | Yin Yanchao, Sun Zhijie, Xue Da, Suo Yongyong, Liu Haibin. Effect of post heat treatment on the microstructure and properties of as-annealed TC4 ELI alloy[J]. IRON STEEL VANADIUM TITANIUM, 2024, 45(3): 55-64. doi: 10.7513/j.issn.1004-7638.2024.03.008 |
| [1] |
Ma Yunyi, Wu Yousheng, Fang Zhigang. Ship equipment and materials[M]. Beijing: Chemical Industry Press, 2016. (马运义, 吴有生, 方志刚. 船舶装备与材料[M]. 北京: 化学工业出版社, 2016.
Ma Yunyi, Wu Yousheng, Fang Zhigang. Ship equipment and materials[M]. Beijing: Chemical Industry Press, 2016.
|
| [2] |
Hai Minna, Huang Fan, Wang Yongmei. Brief analysis of the application of titanium and titanium alloy in marineequipment[J]. Metal World, 2021(5):16−21. (海敏娜, 黄帆, 王永梅. 浅析钛及钛合金在海洋装备上的应用[J]. 金属世界, 2021(5):16−21.
Hai Minna, Huang Fan, Wang Yongmei. Brief analysis of the application of titanium and titanium alloy in marineequipment[J]. Metal World, 2021(5): 16−21.
|
| [3] |
Kriedt F A. Application of titanium for shipboard seawater piping systems[R]. Norfolk: Computer Sciences Corporation, 2009.
|
| [4] |
Mountford J A, Scaturro M R. Titanium – attributes, benefits, use, and applications in the marine market[J]. Journal of Ship Production, 2009,26(1):13−19.
|
| [5] |
Boyer R R, Williams J C. Developments in research and applications in the titanium industry in the USA[C]//Ti-2011 Proceedings of 12th World Conference on Titanium. Beijing: Science Press, 2011.
|
| [6] |
Schutz R W, Scaturro M R. An overview of current and candidate titanium alloy applications on US navy surface ships[J]. Naval Engineers Journal, 1991,103(3):175−191. doi: 10.1111/j.1559-3584.1991.tb00948.x
|
| [7] |
Yin Yanchao, Zhang Shuaifeng, Xu Yali, et al. Influence of pre-strain on deformation behavior of TC4 ELI titanium alloy[J]. Development and Application of Materials, 2023,38(1):66−72. (尹艳超, 张帅锋, 许亚利, 等. 预应变对TC4ELI钛合金变形行为的影响[J]. 材料开发与应用, 2023,38(1):66−72.
Yin Yanchao, Zhang Shuaifeng, Xu Yali, et al. Influence of pre-strain on deformation behavior of TC4 ELI titanium alloy[J]. Development and Application of Materials, 2023, 38(1): 66−72.
|
| [8] |
Rae W, Rahimi S. Effect of stress relaxation on the evolution of residual stress during heat treatment of Ti-6Al-4V[J]. MATEC Web of Conferences, 2020,321(4):11001. doi: 10.1051/matecconf/202032111001
|
| [9] |
Huang Zhen, Yuan Wuhua, Zhu Jiajia. Low temperature stress relaxation and morphology evolution of Ti-6.5Al-2Zr-lMo-1V titanium alloys[J]. Rare Metal Materials and Engineering, 2002,51(1):83−91.
|
| [10] |
Yin Yanchao, Fu Chengxue, Sun Zhijie, et al. Effects of cyclic treatment at 600 ℃ on microstructure and mechanical properties of TA31 and TC4 ELI titanium alloy[J]. Hot Working Technology, 2024(15):77−82. (尹艳超, 符成学, 孙志杰, 等. 600 ℃循环热处理对TA31和TC4 ELI钛合金显微结构及力学性能的影响[J]. 热加工工艺, 2024(15):77−82.
Yin Yanchao, Fu Chengxue, Sun Zhijie, et al. Effects of cyclic treatment at 600 ℃ on microstructure and mechanical properties of TA31 and TC4 ELI titanium alloy[J]. Hot Working Technology, 2024(15): 77−82.
|
| [11] |
Yin Yanchao, Li Longteng, Lü Yifang, et al. Effect of post treatment on the microstructure and properties of as-annealed Ti75 alloy[J]. Iron Steel Vanadium Titanium, 2023,44(5):68−75. (尹艳超, 李龙腾, 吕逸帆, 等. 后处理对退火态Ti75合金显微组织与性能的影响[J]. 钢铁钒钛, 2023,44(5):68−75.
Yin Yanchao, Li Longteng, Lü Yifang, et al. Effect of post treatment on the microstructure and properties of as-annealed Ti75 alloy[J]. Iron Steel Vanadium Titanium, 2023, 44(5): 68−75.
|
| [12] |
Yin Yanchao, Liu Jia, Zhang Shuaifeng, et al. Influence of aging treatment on microstructure and mechanical properties of Ti75 alloy[J]. Titanium Industry Progress, 2023,40(22):21−26. (尹艳超, 刘甲, 张帅锋, 等. 时效工艺对Ti75合金显微组织及力学性能的影响[J]. 钛工业进展, 2023,40(22):21−26.
Yin Yanchao, Liu Jia, Zhang Shuaifeng, et al. Influence of aging treatment on microstructure and mechanical properties of Ti75 alloy[J]. Titanium Industry Progress, 2023, 40(22): 21−26.
|
| [13] |
Lütjering G. Influence of processing on microstructure and mechanical properties of (α+β) titanium alloys[J]. Materials Science and Engineering, 1998,A243:32−45.
|
| [14] |
Gerd L, James C Williams. Titanium[M]. Berlin: Springer-Verlag, 2007.
|
| [15] |
Cao S, Lim C, Hinton B, et al. Effects of microtexture and Ti3Al (α2) precipitates on stress-corrosion cracking properties of a Ti-8Al-1Mo-1V alloy[J]. Corrosion Science, 2017,116:22−33. doi: 10.1016/j.corsci.2016.12.012
|
| [16] |
Liu Z, Welsch G. Effects of oxygen and heat treatment on the mechanical properties of alpha and beta titanium alloys[J]. Metallurgical Transactions A, 1988,19(3):527−542. doi: 10.1007/BF02649267
|
| [17] |
Conrad H. On the strengthening of titanium by aluminum[J]. Scripta Metallurgica, 1973,7(5):509−512. doi: 10.1016/0036-9748(73)90104-X
|
| [18] |
Lütjering G. Property optimization through microstructural control in titanium and aluminum alloys[J]. Materials Science and Engineering, 1999,A263:117−126.
|
| [19] |
Welsch G, Bunk W. Deformation modes of the α-phase of Ti-6Al-4V as a function of oxygen concentration and aging temperature[J]. Metallurgical Transactions A, 1982,13(5):889−899. doi: 10.1007/BF02642403
|
| [20] |
Huang Shixing, Zhao Qingyang, Zhao Yongqing, et al. Toughness effects of Mo and Nb addition on impact toughness and crack resistance of titanium alloys[J]. Journal of Materials Science Technology, 2021,79:147−164.
|
| [21] |
Yu Hui, Cao Shuo, Sabry S Youssef, et al. Generalized stacking fault energies and critical resolved shear stresses of random α-Ti-Al alloys from first - principles calculations[J]. Journal Alloys and Compounds, 2021,850:156314. doi: 10.1016/j.jallcom.2020.156314
|
| [22] |
Wang Hai, Wei Fenrong, Deng Jiabin, et al. Effect factors for yield ratio of titanium alloy and discussion of function mechanism[J]. Hot Working Technology, 2016,45(22):109−111,115. (王海, 魏芬绒, 邓家彬, 等. 影响钛合金屈强比的因素及作用机理探讨[J]. 热加工工艺, 2016,45(22):109−111,115.
Wang Hai, Wei Fenrong, Deng Jiabin, et al. Effect factors for yield ratio of titanium alloy and discussion of function mechanism[J]. Hot Working Technology, 2016, 45(22): 109−111,115.
|
| [23] |
AmbardA, Gue´tazL, Louchet F, et al. Role of interphases in the deformation mechanisms of an α/β titanium alloy at 20 K[J]. Materials Science and Engineering A, 2001,319:404−408.
|
| [24] |
Niinomi M, Kobayashi T. Toughness and microstructural factors of Ti-6Al-4V alloy[J]. Materials Science and Engineering, 1988,100:45−55. doi: 10.1016/0025-5416(88)90238-8
|
| [25] |
Niinomi M, Kobayashi T. Fracture characteristics analysis related to the microstructures in titanium alloys[J]. Materials Science and Engineering, 1996,A212:16−24.
|
| [26] |
Freed C N, Goode R J. Relationship between fracture toughness and estimated plastic zone size in steel, titanium, and aluminum alloys[R]. Washingtou: Naval Research Laboratory, 1969.
|
| [27] |
Lunt D, Busolo T, Xu X, et al. Effect of nanoscale α2 precipitation on strain localization in a two-phase Ti-alloy[J]. Acta Materialia, 2017,129:72−82. doi: 10.1016/j.actamat.2017.02.068
|
| [28] |
Sabry S Youssef, Zheng Xiaodong, Qi Min, et al. Effects of Al content and α2 precipitation on the fatigue crack growth behaviors of binary Ti-Al alloys[J]. Materials Science and Engineering, 2021,A819:141513.
|
| [29] |
Sabry S Youssef, Zheng Xiaodong, Huang Sensen, et al. Precipitation behavior of α2 phase and its influence on mechanical properties of binary Ti-8Al alloy[J]. Journal Alloys and Compounds, 2021,871:159577. doi: 10.1016/j.jallcom.2021.159577
|
| [30] |
Christophe Buirettea, Julitte Hueza, Nathalie Geyb, et al. Study of crack propagation mechanisms during charpy impact toughness tests on both equiaxed and lamellar microstructures of Ti-6Al-4V titanium alloy[J]. Materials Science and Engineering, 2014,A618:546−557.
|
| [31] |
Xu Jianwei, Zeng Weidong, Zhao Yawei, et al. Effect of microstructure evolution of the lamellar alpha on impact toughness in a two-phase titanium alloy[J]. Materials Science and Engineering, 2016,A676:434−440.
|
| [32] |
Lei Lei, Zhao Yongqing, Zhao Qinyang, et al. Impact toughness and deformation modes of Ti-6Al-4V alloy with different microstructures[J]. Materials Science and Engineering, 2021,A801:140411.
|