| Citation: | Li Yunfeng, Wu Chuanbao, Wang Yunwei, Ran Siyu, Zheng Yuqian. Carbon coating, UV irradiation modification of lithium titanate and their electrochemical properties[J]. IRON STEEL VANADIUM TITANIUM, 2024, 45(3): 71-78. doi: 10.7513/j.issn.1004-7638.2024.03.010 |
| [1] |
Ding Xuqiang, Tao Qi, Luo Ying. Design and application of lithium-ion batteries in new energy vehicles[J]. Energy Storage Science and Technology, 2023,12(5):1751−1752. (丁徐强, 陶琦, 罗鹰. 锂离子电池在新能源汽车中的设计及应用[J]. 储能科学与技术, 2023,12(5):1751−1752.
Ding Xuqiang, Tao Qi, Luo Ying. Design and application of lithium-ion batteries in new energy vehicles[J]. Energy Storage Science and Technology, 2023, 12(5): 1751−1752.
|
| [2] |
Zhang Lu. Study on preparation、modification and electrochemical performance of lithium titanate anode materials[D]. Guiyang:Guizhou University, 2021. (张露. 钛酸锂负极材料的制备、改性及其电化学性能的研究[D]. 贵阳:贵州大学, 2021.
Zhang Lu. Study on preparation、modification and electrochemical performance of lithium titanate anode materials[D]. Guiyang:Guizhou University, 2021.
|
| [3] |
Shi Qisen, Yan Xixi, Wu Minchan, et al. Research progress on modification of graphite anode materials for lithium-ion batteries[J]. Chinese Journal of Power Sources, 2023,47(7):838−843. (史淇森, 燕溪溪, 吴敏昌, 等. 锂离子电池石墨负极材料改性研究进展[J]. 电源技术, 2023,47(7):838−843. doi: 10.3969/j.issn.1002-087X.2023.07.003
Shi Qisen, Yan Xixi, Wu Minchan, et al. Research progress on modification of graphite anode materials for lithium-ion batteries[J]. Chinese Journal of Power Sources, 2023, 47(7): 838−843. doi: 10.3969/j.issn.1002-087X.2023.07.003
|
| [4] |
Li Wenrui. Modification and electrochemical properties of lithium titanate anode material for Lithium-ion battery[D]. Guangzhou:Guangdong University of Technology, 2022. (李文睿. 锂离子电池钛酸锂负极材料的改性及其电化学性能研究[D]. 广州:广东工业大学, 2022.
Li Wenrui. Modification and electrochemical properties of lithium titanate anode material for Lithium-ion battery[D]. Guangzhou:Guangdong University of Technology, 2022.
|
| [5] |
Li Wang, Liu Jiali, Zhou Lan. Dynamic and frontier of modifications of Li4Ti5O12 anode material[J]. Iron Steel Vanadium Titanium, 2018,39(4):11−16. (李旺, 刘佳丽, 周兰. 国内外钛酸锂负极材料改性研究动态与前沿[J]. 钢铁钒钛, 2018,39(4):11−16. doi: 10.7513/j.issn.1004-7638.2018.04.002
Li Wang, Liu Jiali, Zhou Lan. Dynamic and frontier of modifications of Li4Ti5O12 anode material[J]. Iron Steel Vanadium Titanium, 2018, 39(4): 11−16. doi: 10.7513/j.issn.1004-7638.2018.04.002
|
| [6] |
Wei Guodong. Effect of surface modification on the electrochemical properties of Li4Ti5O12 as anode material for lithium-ion batteries[D]. Shanghai:Shanghai Jiao Tong University, 2017. (魏国栋. 表面改性对锂离子电池负极材料钛酸锂电化学性能的影响[D]. 上海:上海交通大学, 2017.
Wei Guodong. Effect of surface modification on the electrochemical properties of Li4Ti5O12 as anode material for lithium-ion batteries[D]. Shanghai:Shanghai Jiao Tong University, 2017.
|
| [7] |
Liao Xiongwei, Zheng Shilin, Duan Junfei, et al. Preparation and properties of high-magnification nanocrystalline lithium titanate anode materials for lithium-ion batteries[J]. Materials Science, 2020,10(5):380−390. (廖雄威, 郑世林, 段军飞, 等. 锂离子电池高倍率纳米晶钛酸锂负极材料的制备及性能研究[J]. 材料科学, 2020,10(5):380−390.
Liao Xiongwei, Zheng Shilin, Duan Junfei, et al. Preparation and properties of high-magnification nanocrystalline lithium titanate anode materials for lithium-ion batteries[J]. Materials Science, 2020, 10(5): 380−390.
|
| [8] |
Xu H, Hu X, Sun Y, et al. Highly porous Li4Ti5O12/C nanofibers for ultrafast electrochemical energy storage[J]. Nano Energy, 2014,10:163−171.
|
| [9] |
Xun Rui. Synthesis and polyaniline capping modification of Li2ZnTi3O8, an anode material for lithium-ion batteries[D]. Fushun:Liaoning Shihua University, 2021. (荀瑞. 锂离子电池负极材料Li2ZnTi3O8的合成及聚苯胺包覆改性[D].抚顺: 辽宁石油化工大学, 2021.
Xun Rui. Synthesis and polyaniline capping modification of Li2ZnTi3O8, an anode material for lithium-ion batteries[D]. Fushun:Liaoning Shihua University, 2021.
|
| [10] |
Fang Rongyu, Zhu Guisheng, Xu Huarui, et al. Microwave solid-phase synthesis of nano-lithium titanate powder and its properties[J]. Journal of Functional Materials, 2021,52(08):8112−8117. (方荣宇, 朱归胜, 徐华蕊, 等. 微波固相合成纳米钛酸锂粉体及其性能研究[J]. 功能材料, 2021,52(08):8112−8117. doi: 10.3969/j.issn.1001-9731.2021.08.015
Fang Rongyu, Zhu Guisheng, Xu Huarui, et al. Microwave solid-phase synthesis of nano-lithium titanate powder and its properties[J]. Journal of Functional Materials, 2021, 52(08): 8112−8117. doi: 10.3969/j.issn.1001-9731.2021.08.015
|
| [11] |
Feng Yanhua, Zhang Xiangxin, Lin Changxin, et al. Hydrothermal synthesis of nanosheet lithium titanate and its properties[J]. Electronic Components & Materials, 2020,39(11):33−39. (冯言华, 张祥昕, 林长新, 等. 水热法合成纳米片状钛酸锂及其性能研究[J]. 电子元件与材料, 2020,39(11):33−39.
Feng Yanhua, Zhang Xiangxin, Lin Changxin, et al. Hydrothermal synthesis of nanosheet lithium titanate and its properties[J]. Electronic Components & Materials, 2020, 39(11): 33−39.
|
| [12] |
Hu W, Zou L, Chen X, et al. Highly uniform resistive switching properties of amorphous InGaZnO thin films prepared by a low temperature photochemical solution deposition method[J]. ACS Appl. Mater. Inter. ,2014,6 (7) : 5012–5017.
|
| [13] |
Chen Y, Bian W, Huang W, et al. High critical current density of YBa2Cu307-x superconducting films prepared through a DUV-assisted solution deposition process[J]. Sci. Rep.,2016,6:38257.
|
| [14] |
Zywitzki D,Jing H,Tüysüz H, et al. High surface area, amorphous titania with reactive Ti3+ through a photo-assisted synthesis method for photocatalytic H2 generation[J]. J. Mater. Chem. A, 2017,5 (22): 10957–10967.
|
| [15] |
Yun B, Bui T T, Lee P, et al. Photo-assisted low temperature crystallization of solution-derived LiCoO2 thin film[J]. Mater. Res. Bull. ,2021,138:111241.
|
| [16] |
Wu C B, Wang Y W, Ma G Q, et al. Enhanced rate capability of Li4Ti5O12 anode material by a photo-assisted sol–gel route for lithium-ion batteries[J]. Electrochemistry Communications, 2021,131:3−5.
|
| [17] |
Guo Xin. Preparation and carbon-coating of Li4Ti5O12 as high-rate anode materials for lithium-ion batteries[D]. Hefei:Hefei University of Technology, 2014. (郭鑫. 高倍率Li4Ti5O12负极材料的制备及碳包覆研究[D]. 合肥:合肥工业大学, 2014.
Guo Xin. Preparation and carbon-coating of Li4Ti5O12 as high-rate anode materials for lithium-ion batteries[D]. Hefei:Hefei University of Technology, 2014.
|
| [18] |
Xue Bing. Co-modification and electrochemical performance evaluation of Li4Ti5O12/C materials[D]. Dalian University of Technology, 2020. (薛冰. Li4Ti5O12/C材料复合改性及电化学性能评价[D]. 大连:大连理工大学, 2020.
Xue Bing. Co-modification and electrochemical performance evaluation of Li4Ti5O12/C materials[D]. Dalian University of Technology, 2020.
|
| [19] |
Qian Delai. Preparation and electrochemical properties of lithium titanate as anode material for lithium-ion batteries[D]. Qingdao: Shandong University of Science and Technology, 2019. (钱德来. 锂离子电池负极材料钛酸锂的制备及其电化学性能研究[D]. 青岛: 山东科技大学, 2019.
Qian Delai. Preparation and electrochemical properties of lithium titanate as anode material for lithium-ion batteries[D]. Qingdao: Shandong University of Science and Technology, 2019.
|
| [20] |
Zhang Lihui, Xu Yuxing, Liu Zhenfa, et al. Synthesis and electrochemical properties of Li4Ti5O12/graphene composite as an anode material for Li-ion batteries[J]. Chemical Industry and Engineering Progress, 2019,38(2):949−955. (张利辉, 徐宇兴, 刘振法, 等. 钛酸锂/石墨烯复合负极材料的制备及电化学性能[J]. 化工进展, 2019,38(2):949−955.
Zhang Lihui, Xu Yuxing, Liu Zhenfa, et al. Synthesis and electrochemical properties of Li4Ti5O12/graphene composite as an anode material for Li-ion batteries[J]. Chemical Industry and Engineering Progress, 2019, 38(2): 949−955.
|