Volume 45 Issue 3
Jul.  2024
Turn off MathJax
Article Contents
Li Yunfeng, Wu Chuanbao, Wang Yunwei, Ran Siyu, Zheng Yuqian. Carbon coating, UV irradiation modification of lithium titanate and their electrochemical properties[J]. IRON STEEL VANADIUM TITANIUM, 2024, 45(3): 71-78. doi: 10.7513/j.issn.1004-7638.2024.03.010
Citation: Li Yunfeng, Wu Chuanbao, Wang Yunwei, Ran Siyu, Zheng Yuqian. Carbon coating, UV irradiation modification of lithium titanate and their electrochemical properties[J]. IRON STEEL VANADIUM TITANIUM, 2024, 45(3): 71-78. doi: 10.7513/j.issn.1004-7638.2024.03.010

Carbon coating, UV irradiation modification of lithium titanate and their electrochemical properties

doi: 10.7513/j.issn.1004-7638.2024.03.010
More Information
  • Received Date: 2024-02-05
  • Publish Date: 2024-07-02
  • Lithium titanate (Li4Ti5O12, abbreviated as LTO) has become an important anode material for lithium-ion batteries due to its structural "zero-strain" property. However, the low electronic conductivity of lithium titanate limits its high-rate performance. In this paper, a light-assisted sol-gel method was proposed to prepare LTO/C anode materials, the effects of different carbon source ratios and light irradiation on the microstructure and electrochemical properties of LTO/C were investigated. Compared with the results of sucrose as the carbon source, the rate performance of the LTO/C with glucose as the carbon source is better due to the higher degree of graphitized carbon coated on the surface of LTO. Under the UV irradiation condition, the reduction of LTO/C particle size makes the discharge specific capacity of UV-irradiated LTO/C higher than that of LTO/C without UV irradiation at different rates. The discharge specific capacity of the LTO/C sample prepared with 20% glucose as carbon source assisted with UV irradiation process reaches 101.5 mAh·g−1 at 10 C.
  • loading
  • [1]
    Ding Xuqiang, Tao Qi, Luo Ying. Design and application of lithium-ion batteries in new energy vehicles[J]. Energy Storage Science and Technology, 2023,12(5):1751−1752. (丁徐强, 陶琦, 罗鹰. 锂离子电池在新能源汽车中的设计及应用[J]. 储能科学与技术, 2023,12(5):1751−1752.

    Ding Xuqiang, Tao Qi, Luo Ying. Design and application of lithium-ion batteries in new energy vehicles[J]. Energy Storage Science and Technology, 2023, 12(5): 1751−1752.
    [2]
    Zhang Lu. Study on preparation、modification and electrochemical performance of lithium titanate anode materials[D]. Guiyang:Guizhou University, 2021. (张露. 钛酸锂负极材料的制备、改性及其电化学性能的研究[D]. 贵阳:贵州大学, 2021.

    Zhang Lu. Study on preparation、modification and electrochemical performance of lithium titanate anode materials[D]. Guiyang:Guizhou University, 2021.
    [3]
    Shi Qisen, Yan Xixi, Wu Minchan, et al. Research progress on modification of graphite anode materials for lithium-ion batteries[J]. Chinese Journal of Power Sources, 2023,47(7):838−843. (史淇森, 燕溪溪, 吴敏昌, 等. 锂离子电池石墨负极材料改性研究进展[J]. 电源技术, 2023,47(7):838−843. doi: 10.3969/j.issn.1002-087X.2023.07.003

    Shi Qisen, Yan Xixi, Wu Minchan, et al. Research progress on modification of graphite anode materials for lithium-ion batteries[J]. Chinese Journal of Power Sources, 2023, 47(7): 838−843. doi: 10.3969/j.issn.1002-087X.2023.07.003
    [4]
    Li Wenrui. Modification and electrochemical properties of lithium titanate anode material for Lithium-ion battery[D]. Guangzhou:Guangdong University of Technology, 2022. (李文睿. 锂离子电池钛酸锂负极材料的改性及其电化学性能研究[D]. 广州:广东工业大学, 2022.

    Li Wenrui. Modification and electrochemical properties of lithium titanate anode material for Lithium-ion battery[D]. Guangzhou:Guangdong University of Technology, 2022.
    [5]
    Li Wang, Liu Jiali, Zhou Lan. Dynamic and frontier of modifications of Li4Ti5O12 anode material[J]. Iron Steel Vanadium Titanium, 2018,39(4):11−16. (李旺, 刘佳丽, 周兰. 国内外钛酸锂负极材料改性研究动态与前沿[J]. 钢铁钒钛, 2018,39(4):11−16. doi: 10.7513/j.issn.1004-7638.2018.04.002

    Li Wang, Liu Jiali, Zhou Lan. Dynamic and frontier of modifications of Li4Ti5O12 anode material[J]. Iron Steel Vanadium Titanium, 2018, 39(4): 11−16. doi: 10.7513/j.issn.1004-7638.2018.04.002
    [6]
    Wei Guodong. Effect of surface modification on the electrochemical properties of Li4Ti5O12 as anode material for lithium-ion batteries[D]. Shanghai:Shanghai Jiao Tong University, 2017. (魏国栋. 表面改性对锂离子电池负极材料钛酸锂电化学性能的影响[D]. 上海:上海交通大学, 2017.

    Wei Guodong. Effect of surface modification on the electrochemical properties of Li4Ti5O12 as anode material for lithium-ion batteries[D]. Shanghai:Shanghai Jiao Tong University, 2017.
    [7]
    Liao Xiongwei, Zheng Shilin, Duan Junfei, et al. Preparation and properties of high-magnification nanocrystalline lithium titanate anode materials for lithium-ion batteries[J]. Materials Science, 2020,10(5):380−390. (廖雄威, 郑世林, 段军飞, 等. 锂离子电池高倍率纳米晶钛酸锂负极材料的制备及性能研究[J]. 材料科学, 2020,10(5):380−390.

    Liao Xiongwei, Zheng Shilin, Duan Junfei, et al. Preparation and properties of high-magnification nanocrystalline lithium titanate anode materials for lithium-ion batteries[J]. Materials Science, 2020, 10(5): 380−390.
    [8]
    Xu H, Hu X, Sun Y, et al. Highly porous Li4Ti5O12/C nanofibers for ultrafast electrochemical energy storage[J]. Nano Energy, 2014,10:163−171.
    [9]
    Xun Rui. Synthesis and polyaniline capping modification of Li2ZnTi3O8, an anode material for lithium-ion batteries[D]. Fushun:Liaoning Shihua University, 2021. (荀瑞. 锂离子电池负极材料Li2ZnTi3O8的合成及聚苯胺包覆改性[D].抚顺: 辽宁石油化工大学, 2021.

    Xun Rui. Synthesis and polyaniline capping modification of Li2ZnTi3O8, an anode material for lithium-ion batteries[D]. Fushun:Liaoning Shihua University, 2021.
    [10]
    Fang Rongyu, Zhu Guisheng, Xu Huarui, et al. Microwave solid-phase synthesis of nano-lithium titanate powder and its properties[J]. Journal of Functional Materials, 2021,52(08):8112−8117. (方荣宇, 朱归胜, 徐华蕊, 等. 微波固相合成纳米钛酸锂粉体及其性能研究[J]. 功能材料, 2021,52(08):8112−8117. doi: 10.3969/j.issn.1001-9731.2021.08.015

    Fang Rongyu, Zhu Guisheng, Xu Huarui, et al. Microwave solid-phase synthesis of nano-lithium titanate powder and its properties[J]. Journal of Functional Materials, 2021, 52(08): 8112−8117. doi: 10.3969/j.issn.1001-9731.2021.08.015
    [11]
    Feng Yanhua, Zhang Xiangxin, Lin Changxin, et al. Hydrothermal synthesis of nanosheet lithium titanate and its properties[J]. Electronic Components & Materials, 2020,39(11):33−39. (冯言华, 张祥昕, 林长新, 等. 水热法合成纳米片状钛酸锂及其性能研究[J]. 电子元件与材料, 2020,39(11):33−39.

    Feng Yanhua, Zhang Xiangxin, Lin Changxin, et al. Hydrothermal synthesis of nanosheet lithium titanate and its properties[J]. Electronic Components & Materials, 2020, 39(11): 33−39.
    [12]
    Hu W, Zou L, Chen X, et al. Highly uniform resistive switching properties of amorphous InGaZnO thin films prepared by a low temperature photochemical solution deposition method[J]. ACS Appl. Mater. Inter. ,2014,6 (7) : 5012–5017.
    [13]
    Chen Y, Bian W, Huang W, et al. High critical current density of YBa2Cu307-x superconducting films prepared through a DUV-assisted solution deposition process[J]. Sci. Rep.,2016,6:38257.
    [14]
    Zywitzki D,Jing H,Tüysüz H, et al. High surface area, amorphous titania with reactive Ti3+ through a photo-assisted synthesis method for photocatalytic H2 generation[J]. J. Mater. Chem. A, 2017,5 (22): 10957–10967.
    [15]
    Yun B, Bui T T, Lee P, et al. Photo-assisted low temperature crystallization of solution-derived LiCoO2 thin film[J]. Mater. Res. Bull. ,2021,138:111241.
    [16]
    Wu C B, Wang Y W, Ma G Q, et al. Enhanced rate capability of Li4Ti5O12 anode material by a photo-assisted sol–gel route for lithium-ion batteries[J]. Electrochemistry Communications, 2021,131:3−5.
    [17]
    Guo Xin. Preparation and carbon-coating of Li4Ti5O12 as high-rate anode materials for lithium-ion batteries[D]. Hefei:Hefei University of Technology, 2014. (郭鑫. 高倍率Li4Ti5O12负极材料的制备及碳包覆研究[D]. 合肥:合肥工业大学, 2014.

    Guo Xin. Preparation and carbon-coating of Li4Ti5O12 as high-rate anode materials for lithium-ion batteries[D]. Hefei:Hefei University of Technology, 2014.
    [18]
    Xue Bing. Co-modification and electrochemical performance evaluation of Li4Ti5O12/C materials[D]. Dalian University of Technology, 2020. (薛冰. Li4Ti5O12/C材料复合改性及电化学性能评价[D]. 大连:大连理工大学, 2020.

    Xue Bing. Co-modification and electrochemical performance evaluation of Li4Ti5O12/C materials[D]. Dalian University of Technology, 2020.
    [19]
    Qian Delai. Preparation and electrochemical properties of lithium titanate as anode material for lithium-ion batteries[D]. Qingdao: Shandong University of Science and Technology, 2019. (钱德来. 锂离子电池负极材料钛酸锂的制备及其电化学性能研究[D]. 青岛: 山东科技大学, 2019.

    Qian Delai. Preparation and electrochemical properties of lithium titanate as anode material for lithium-ion batteries[D]. Qingdao: Shandong University of Science and Technology, 2019.
    [20]
    Zhang Lihui, Xu Yuxing, Liu Zhenfa, et al. Synthesis and electrochemical properties of Li4Ti5O12/graphene composite as an anode material for Li-ion batteries[J]. Chemical Industry and Engineering Progress, 2019,38(2):949−955. (张利辉, 徐宇兴, 刘振法, 等. 钛酸锂/石墨烯复合负极材料的制备及电化学性能[J]. 化工进展, 2019,38(2):949−955.

    Zhang Lihui, Xu Yuxing, Liu Zhenfa, et al. Synthesis and electrochemical properties of Li4Ti5O12/graphene composite as an anode material for Li-ion batteries[J]. Chemical Industry and Engineering Progress, 2019, 38(2): 949−955.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)

    Article Metrics

    Article views (213) PDF downloads(13) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return