Volume 45 Issue 3
Jul.  2024
Turn off MathJax
Article Contents
Zhang Ying, Ren Wang, Zheng Xingwen, Zhou Huimian, Qu Xiang, Li Minjiao. Study on preparation and photocatalytic performance of mint carbon dots/TiO2 composite photocatalyst[J]. IRON STEEL VANADIUM TITANIUM, 2024, 45(3): 79-85. doi: 10.7513/j.issn.1004-7638.2024.03.011
Citation: Zhang Ying, Ren Wang, Zheng Xingwen, Zhou Huimian, Qu Xiang, Li Minjiao. Study on preparation and photocatalytic performance of mint carbon dots/TiO2 composite photocatalyst[J]. IRON STEEL VANADIUM TITANIUM, 2024, 45(3): 79-85. doi: 10.7513/j.issn.1004-7638.2024.03.011

Study on preparation and photocatalytic performance of mint carbon dots/TiO2 composite photocatalyst

doi: 10.7513/j.issn.1004-7638.2024.03.011
More Information
  • Received Date: 2024-01-17
  • Publish Date: 2024-07-02
  • In this study, mint powder was employed as biological carbon source to prepare mint carbon dots (mint-CDs)/TiO2 composite photocatalyst by a one-step hydrothermal method. The structure, morphology, specific surface area and photogenerated charges separation characteristics were carefully investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), Brunauer-Emmett-Teller (BET) method, and surface photovoltage spectroscopy (SPS). Rhodamine B (RhB) was employed as model pollutant to study the photocatalytic activities of mint-CDs/TiO2 photocatalysts. The results show that mint-CD improve the photocatalytic activity of TiO2, and superoxide free radical •O2 is the main active free radical in the photocatalytic degradation reaction. When the mass ratio of mint-CDs/TiO2 is 2%, the composite photocatalyst demonstrates the maximum photogenerated charges separation efficiency and degradation activity for RhB, and the photocatalytic activity was increased by 2.24 times compared with reference TiO2.
  • loading
  • [1]
    Han F, Kambala V S R, Srinivasan M, et al. Tailored titanium dioxide photocatalysts for the degradation of organic dyes in wastewater treatment: A review[J]. Appl. Catal. A: Gen. , 2009, 359: 25−40.
    [2]
    Zhu X, Li B. Convergence of efficiency of environmental pollution control investment in the coastal areas of China[J]. J. Coastal Res. , 2020, 105: 36−41.
    [3]
    Al-Mamun M R, Kader S, Islam M S, et al. Photocatalytic activity improvement and application of UV-TiO2 photocatalysis in textile wastewater treatment: A review[J]. J. Environ. Chem. Eng., 2019,7(5):103248. doi: 10.1016/j.jece.2019.103248
    [4]
    Yu Y, Li F, Han X, et al. High-performance metal oxide-modified V/TiO2 catalysts for selective oxidation of 2-methylnaphthalene to 2-naphthaldehyde: An experimental and theoretical study[J]. Ind. Eng. Chem. Res., 2021,60(8):3435−3451. doi: 10.1021/acs.iecr.0c04697
    [5]
    Ren Yuanwen, Wang Jing, Guo Yu, et al. Progress in preparation and photocatalytic properties of high efficiency TiO2 nanomaterials[J]. J. Func. Mater. Dev., 2020,26(1):24−29. (任元文, 王竞, 郭玉, 等. 高效TiO2纳米材料制备及其光催化性能研究进展[J]. 功能材料与器件学报, 2020,26(1):24−29.

    Ren Yuanwen, Wang Jing, Guo Yu, et al. Progress in preparation and photocatalytic properties of high efficiency TiO2 nanomaterials[J]. J. Func. Mater. Dev., 2020, 26(1): 24−29.
    [6]
    Schneider J, Matsuoka M, Takeuchi M, et al. Understanding TiO2 photocatalysis: Mechanisms and materials[J]. Chem. Rev., 2014,114(19):9919−9986. doi: 10.1021/cr5001892
    [7]
    Elzawiei Y S M, Hashim M R, Halim M M, et al. Characterization and growth of TiO2/ZnO on PTFE substrates at different volumetric ratios using chemical bath deposition[J]. Coatings, 2023,13(2):379. doi: 10.3390/coatings13020379
    [8]
    Ren Wang, Li Minjiao, Zhang Ying, et al. Study on fabrication and photocatalytic performance of Ag2C2O4/TiO2 heterojunctions[J]. Iron Steel Vanadium Titanium, 2022,43(3):53−58. (任旺, 李敏娇, 张英, 等. Ag2C2O4/TiO2 异质结的制备及其光催化性能研究[J]. 钢铁钒钛, 2022,43(3):53−58. doi: 10.7513/j.issn.1004-7638.2022.03.009

    Ren Wang, Li Minjiao, Zhang Ying, et al. Study on fabrication and photocatalytic performance of Ag2C2O4/TiO2 heterojunctions[J]. Iron Steel Vanadium Titanium, 2022, 43(3): 53−58. doi: 10.7513/j.issn.1004-7638.2022.03.009
    [9]
    Karimi-Maleh H, Kumar B G, Rajendran S, et al. Tuning of metal oxides photocatalytic performance using Ag nanoparticles integration[J]. J. Mol. Liq., 2020,314:113588. doi: 10.1016/j.molliq.2020.113588
    [10]
    Wang Y, Zhang R, Li J, et al. First-principles study on transition metal-doped anatase TiO2[J]. Nanoscale Res. Lett., 2014,9(1):1−8. doi: 10.1186/1556-276X-9-1
    [11]
    Ren Qingyun, Wang Songtao, Li Wenjing, et al. Synthesis and photocatalytic properties of Zr doped TiO2 nanoparticles[J]. J. Funct. Mater., 2021,52(11):11164−11168. (任庆云, 王松涛, 李汶静, 等. Zr掺杂TiO2纳米粒子的合成及光催化性能研究[J]. 功能材料, 2021,52(11):11164−11168. doi: 10.3969/j.issn.1001-9731.2021.11.024

    Ren Qingyun, Wang Songtao, Li Wenjing, et al. Synthesis and photocatalytic properties of Zr doped TiO2 nanoparticles[J]. J. Funct. Mater., 2021, 52(11): 11164−11168. doi: 10.3969/j.issn.1001-9731.2021.11.024
    [12]
    Liu Bing, Gong Huili, Liu Rui, et al. One-step synthesis of TiO2-Au composite and its performance for photocatalytic hydrogen evolution[J]. Chinese J. Appl. Chem., 2019,36(9):1071−1084. (刘兵, 宫辉力, 刘锐, 等. 一步法制备二氧化钛-金复合材料及其光解水制氢性能[J]. 应用化学, 2019,36(9):1071−1084. doi: 10.11944/j.issn.1000-0518.2019.09.190017

    Liu Bing, Gong Huili, Liu Rui, et al. One-step synthesis of TiO2-Au composite and its performance for photocatalytic hydrogen evolution[J]. Chinese J. Appl. Chem., 2019, 36(9): 1071−1084. doi: 10.11944/j.issn.1000-0518.2019.09.190017
    [13]
    Gao Jingyu, Li Lina, Zhao Yubao. Highly efficient degradation of organohalides pollutants by Pd/TiO2 photocatalyst[J]. Environ. Prot. Sci., 2021,47(5):133−139. (高靖雨, 李莉娜, 赵玉宝. Pd-TiO2光催化高效降解有机卤代污染物[J]. 环境保护科学, 2021,47(5):133−139.

    Gao Jingyu, Li Lina, Zhao Yubao. Highly efficient degradation of organohalides pollutants by Pd/TiO2 photocatalyst[J]. Environ. Prot. Sci., 2021, 47(5): 133−139.
    [14]
    Wang Zhumei, Zhang Tianfeng, Li Yueming, et al. Photocatalytic properties of S-doped TiO2 nanopowders prepared by sol-gel method method[J]. J. Synth. Cryst., 2018,47(4):765−769,776. (王竹梅, 张天峰, 李月明, 等. 溶胶-凝胶法制备S掺杂TiO2纳米粉体的光催化性能[J]. 人工晶体学报, 2018,47(4):765−769,776. doi: 10.3969/j.issn.1000-985X.2018.04.016

    Wang Zhumei, Zhang Tianfeng, Li Yueming, et al. Photocatalytic properties of S-doped TiO2 nanopowders prepared by sol-gel method method[J]. J. Synth. Cryst., 2018, 47(4): 765−769,776. doi: 10.3969/j.issn.1000-985X.2018.04.016
    [15]
    Li Jiabi, Wu Xi, Liu Shengwei. Fluorinated TiO2 hollow photocatalysts for photocatalytic applications[J]. Acta Phys. Chim. Sin., 2021,37(6):2009038.
    [16]
    Rasool M A, Sattar R, Anum A, et al. An Insight into carbon nanomaterial-based photocatalytic water splitting for green hydrogen production[J]. Catalysts, 2023,13:66.
    [17]
    Konstantinova E A, Kokorin A I, Sakthivel S, et al. Carbon-doped titanium dioxide: Visible light photocatalysis and EPR investigation[J]. Chimia, 2007,61:810−814. doi: 10.2533/chimia.2007.810
    [18]
    He Jie, Che Juanrong, Liu Shunan, et al. Activated carbon modified titanium dioxide/bismuth trioxide adsorbent: One-pot synthesis, high removal efficiency of organic pollutants, and good recyclability[J]. J. Colloid. Interf. Sci., 2023,648(15):1034−1043.
    [19]
    Artar E, Arvas M B, Gorduk O, et al. Facile synthesis strategy for phthalocyanine-titanium dioxide/multi-walled carbon nanotube/poly (3, 4-ethylenedioxythiophene) ternary composite electrodes via one-step electrochemical method for supercapacitor applications[J]. Synthetic Met., 2023,297:117401. doi: 10.1016/j.synthmet.2023.117401
    [20]
    Bokare A, Chinnusamy S, Erogbogbo F. TiO2-graphene quantum dots nanocomposites for photocatalysis in energy and biomedical applications[J]. Catalysts, 2021,11:319. doi: 10.3390/catal11030319
    [21]
    Guo Xueying, Wang Qianqian, Lai Qiongyu, et al. Biomass-templated fabrication of metallic materials for photocatalytic and bactericidal applications[J]. Materials, 2019,12:1271. doi: 10.3390/ma12081271
    [22]
    Liao Hongru, Ran Yu, Zhong Junbo, et al. Panax notoginseng powder-assisted preparation of carbon-quantum-dots/BiOCl with enriched oxygen vacancies and boosted photocatalytic performance[J]. Environ. Res. , 2022, 215: 114366.
    [23]
    Wang Zhaofeng, Ding Zimian, He Jiang, et al. Progress in chemical constituents, pharmacological activities and product development of mentha haplocalyx briq[J]. Mod. Chin. Med., 2020,22(6):979−984. (王兆丰, 丁自勉, 何江, 等. 薄荷化学成分药理作用与产品研发进展[J]. 中国现代中药, 2020,22(6):979−984.

    Wang Zhaofeng, Ding Zimian, He Jiang, et al. Progress in chemical constituents, pharmacological activities and product development of mentha haplocalyx briq[J]. Mod. Chin. Med., 2020, 22(6): 979−984.
    [24]
    Lai Chengxu, Zhong Junbo, Chen Jiufu, et al. Mint powder assisted synthesis of CQDs/BiOCl with tunable OVs and improved photocatalytic property[J]. J. Ind. Eng. Chem., 2023,128:306−316. doi: 10.1016/j.jiec.2023.07.063
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(1)

    Article Metrics

    Article views (447) PDF downloads(15) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return