| Citation: | Zeng Junjie, Li Gang, Chen Lian, Xue Yuxiao, Lü Xuewei. High-temperature heat capacity and metallurgical performance of Ca3TiFe2O8[J]. IRON STEEL VANADIUM TITANIUM, 2024, 45(3): 141-146. doi: 10.7513/j.issn.1004-7638.2024.03.019 |
| [1] |
Li Shuo, Chen Fulin, Cai Xianyan, et al. Experimental study on quality improvement and impurity reduction of a vanadium-titanium iron concentrate in Panxi[J]. Iron Steel Vanadium Titanium, 2023,44(5):105−110. (李硕, 陈福林, 蔡先炎, 等. 攀西某钒钛铁精矿提质降杂试验研究[J]. 钢铁钒钛, 2023,44(5):105−110. doi: 10.7513/j.issn.1004-7638.2023.05.016
Li Shuo, Chen Fulin, Cai Xianyan, et al. Experimental study on quality improvement and impurity reduction of a vanadium-titanium iron concentrate in Panxi[J]. Iron Steel Vanadium Titanium, 2023, 44(5): 105−110. doi: 10.7513/j.issn.1004-7638.2023.05.016
|
| [2] |
Deng Jun, Xue Xun, Liu Gongguo. Current situation and development of comprehensive utilization of vanadium-bearing titanomagnetite at Pangang[J]. Joumal of Materials and Metallurgy, 2007(2):83−86,93. (邓君, 薛逊, 刘功国. 攀钢钒钛磁铁矿资源综合利用现状与发展[J]. 材料与冶金学报, 2007(2):83−86,93. doi: 10.3969/j.issn.1671-6620.2007.02.001
Deng Jun, Xue Xun, Liu Gongguo. Current situation and development of comprehensive utilization of vanadium-bearing titanomagnetite at Pangang[J]. Joumal of Materials and Metallurgy, 2007(2): 83−86,93. doi: 10.3969/j.issn.1671-6620.2007.02.001
|
| [3] |
Jiang Tao, Xu Jing, Guan Shanfei, et al. Study on coal-based direct reduction of high-chromium vanadium-titanium magnetite[J]. Journal of Northeastern University( Natural Science), 2015,36(1):77−80,85. (姜涛, 徐静, 关山飞, 等. 高铬型钒钛磁铁矿煤基直接还原研究[J]. 东北大学学报(自然科学版), 2015,36(1):77−80,85. doi: 10.3969/j.issn.1005-3026.2015.01.017
Jiang Tao, Xu Jing, Guan Shanfei, et al. Study on coal-based direct reduction of high-chromium vanadium-titanium magnetite[J]. Journal of Northeastern University( Natural Science), 2015, 36(1): 77−80,85. doi: 10.3969/j.issn.1005-3026.2015.01.017
|
| [4] |
Chen Haibin, Zhou Zhenhua, Zhang Zuojin, et al. Research progress in the comprehensive recovery of vanadium-titanium magnetite[J]. Modern Mining, 2023,39(1):7−9. (陈海彬, 周振华, 张作金, 等. 钒钛磁铁矿综合回收研究进展[J]. 现代矿业, 2023,39(1):7−9. doi: 10.3969/j.issn.1674-6082.2023.01.002
Chen Haibin, Zhou Zhenhua, Zhang Zuojin, et al. Research progress in the comprehensive recovery of vanadium-titanium magnetite[J]. Modern Mining, 2023, 39(1): 7−9. doi: 10.3969/j.issn.1674-6082.2023.01.002
|
| [5] |
Wang Yanjun. Study on the BF burden structure optimization of Cr-bearing vanadium-titanium magnetite[D]. Shenyang: Northeastern University, 2019. (王艳军. 含铬型钒钛磁铁矿高炉炉料结构优化研究[D]. 沈阳: 东北大学, 2019.
Wang Yanjun. Study on the BF burden structure optimization of Cr-bearing vanadium-titanium magnetite[D]. Shenyang: Northeastern University, 2019.
|
| [6] |
Zhang Yong. Key technology research on blast furnace smelting high chromium vanadium-titanium magnetite[D]. Shenyang: Northeastern University, 2014. (张勇. 高铬型钒钛磁铁矿高炉冶炼关键技术研究[D]. 沈阳: 东北大学, 2014.
Zhang Yong. Key technology research on blast furnace smelting high chromium vanadium-titanium magnetite[D]. Shenyang: Northeastern University, 2014.
|
| [7] |
Hong Lukuo, Wu Bingqiang, Li Mingduo, et al. Direct reduction process for carbon-containing pellets of vanadium-bearing titanomagnetite[J]. Mining and Metallurgical Engineering, 2017,37(3):86−89,93. (洪陆阔, 武兵强, 李明铎, 等. 钒钛磁铁精矿含碳球团直接还原工艺分析[J]. 矿冶工程, 2017,37(3):86−89,93. doi: 10.3969/j.issn.0253-6099.2017.03.022
Hong Lukuo, Wu Bingqiang, Li Mingduo, et al. Direct reduction process for carbon-containing pellets of vanadium-bearing titanomagnetite[J]. Mining and Metallurgical Engineering, 2017, 37(3): 86−89,93. doi: 10.3969/j.issn.0253-6099.2017.03.022
|
| [8] |
Xue Xun. Research on direct reduction of vanadic titanomagnetite[J]. Iron Steel Vanadium Titanium, 2007,28(3):37−41. (薛逊. 钒钛磁铁矿直接还原实验研究[J]. 钢铁钒钛, 2007,28(3):37−41. doi: 10.3969/j.issn.1004-7638.2007.03.009
Xue Xun. Research on direct reduction of vanadic titanomagnetite[J]. Iron Steel Vanadium Titanium, 2007, 28(3): 37−41. doi: 10.3969/j.issn.1004-7638.2007.03.009
|
| [9] |
Yang Yang, Li Yang, Guo Min, et al. Selective enrichment of Ti element and phase transformation of MgAl2O4 in titanium-containing electric furnace molten slag during the alkali fusion process[J]. Chinese Journal of Engineering, 2015,37(1):78−85. (杨洋, 李杨, 郭敏, 等. 含钛电炉熔分渣碱熔过程中Ti元素的选择性富集及MgAl2O4的物相转化规律[J]. 工程科学学报, 2015,37(1):78−85.
Yang Yang, Li Yang, Guo Min, et al. Selective enrichment of Ti element and phase transformation of MgAl2O4 in titanium-containing electric furnace molten slag during the alkali fusion process[J]. Chinese Journal of Engineering, 2015, 37(1): 78−85.
|
| [10] |
Pownceby M I, Webster N A S, Manuel J R, et al. The influence of ore composition on sinter phase mineralogy and strength[J]. Mineral Processing and Extractive Metallurgy, 2016,125(3):140−148. doi: 10.1080/03719553.2016.1153276
|
| [11] |
Zhou Mi, Yang S T, Jiang Tao, et al. Influence of MgO in form of magnesite on properties and mineralogy of high chromium, vanadium, titanium magnetite sinters[J]. Ironmaking & Steelmaking, 2015,42(3):217−225.
|
| [12] |
Pimenta H P, Seshadri V. Influence of Al2O3 and TiO2 degradation behaviour of sinter and hematite at low temperatures on reduction[J]. Ironmaking & Steelmaking, 2002,29(3):175−179.
|
| [13] |
Paananen Timo, Kinnunen Kimmo. Effect of TiO2‐content on reduction of iron ore agglomerates[J]. Steel Research International, 2009,80(6):408−414.
|
| [14] |
Dehghan-Manshadi Ali, Manuel James, Hapugoda Sarath, et al. Sintering characteristics of titanium containing iron ores[J]. ISIJ International, 2014,54(10):2189−2195. doi: 10.2355/isijinternational.54.2189
|
| [15] |
Bristow Neil John, Loo Chin Eng. Sintering properties of iron ore mixes containing titanium[J]. ISIJ International, 1992,32(7):819−828. doi: 10.2355/isijinternational.32.819
|
| [16] |
Lin Wenkang, Hu Peng. Influence of TiO2 content and basicity level on the metallogenic regularity of V-Ti sinter[J]. Iron Steel Vanadium Titanium, 2020,41(2):94−100. (林文康, 胡鹏. TiO2含量和碱度水平对钒钛烧结矿成矿规律的影响研究[J]. 钢铁钒钛, 2020,41(2):94−100. doi: 10.7513/j.issn.1004-7638.2020.02.018
Lin Wenkang, Hu Peng. Influence of TiO2 content and basicity level on the metallogenic regularity of V-Ti sinter[J]. Iron Steel Vanadium Titanium, 2020, 41(2): 94−100. doi: 10.7513/j.issn.1004-7638.2020.02.018
|
| [17] |
Wang Yaozu, Zhang Jianliang, Liu Zhengjian. Effects of w(TiO2) on mineral structure and softening-melting property of sinter[J]. Iron and Steel, 2017,52(10):20−28. (王耀祖, 张建良, 刘征建. w(TiO2)对烧结矿矿相结构及软熔滴落性能的影响[J]. 钢铁, 2017,52(10):20−28.
Wang Yaozu, Zhang Jianliang, Liu Zhengjian. Effects of w(TiO2) on mineral structure and softening-melting property of sinter[J]. Iron and Steel, 2017, 52(10): 20−28.
|
| [18] |
Gan Qin, He Qun. The influence factors of calcium ferrite generation during vanadium-titanium iron ore concentrates sintering[J]. Sintering and Pelletizing, 2008(2):9−14. (甘勤, 何群. 影响钒钛烧结矿铁酸钙生成因素的研究[J]. 烧结球团, 2008(2):9−14.
Gan Qin, He Qun. The influence factors of calcium ferrite generation during vanadium-titanium iron ore concentrates sintering[J]. Sintering and Pelletizing, 2008(2): 9−14.
|
| [19] |
Yin Zhenkui, Li Jingshe, Yang Shufeng. Sintering pot test on improving TiO2-containing ore’s allocated proportion[J]. Advanced Materials Research, 2011,311:850−853.
|
| [20] |
Xiang Nan, Guo Yufeng, Guo Xingmin. Formation mechanism of Ca3TiFe2O8 in a CaO-TiO2-Fe2O3 system[J]. Chinese Journal of Engineering, 2017, 39(11): 1669−1673. (项南, 郭玉峰, 郭兴敏. CaO-TiO2-Fe2O3三元系中Ca3TiFe2O8的生成机理[J]. 工程科学学报, 2017, 39(11): 1669−1673.
Xiang Nan, Guo Yufeng, Guo Xingmin. Formation mechanism of Ca3TiFe2O8 in a CaO-TiO2-Fe2O3 system[J]. Chinese Journal of Engineering, 2017, 39(11): 1669−1673.
|
| [21] |
Fu Xinyuan, Guo Xingmin. Effect of Ca3TiFe2O8 on temperature of liquid phase appeared in sintering process of iron ore fines[J]. Iron Steel Vanadium Titanium, 2020,41(1):105−112. (付信元, 郭兴敏. Ca3TiFe2O8对铁矿石烧结过程中液相生成温度的影响[J]. 钢铁钒钛, 2020,41(1):105−112. doi: 10.7513/j.issn.1004-7638.2020.01.019
Fu Xinyuan, Guo Xingmin. Effect of Ca3TiFe2O8 on temperature of liquid phase appeared in sintering process of iron ore fines[J]. Iron Steel Vanadium Titanium, 2020, 41(1): 105−112. doi: 10.7513/j.issn.1004-7638.2020.01.019
|
| [22] |
Li Gang, Ding Chengyi, Xuan Senwei, et al. Non-isothermal reduction kinetics of calcium ferrite and hematite[J]. Chinese Journal of Engineering, 2018,40(11):1317−1324. (李刚, 丁成义, 宣森炜, 等. 铁酸钙与赤铁矿非等温还原动力学[J]. 工程科学学报, 2018,40(11):1317−1324.
Li Gang, Ding Chengyi, Xuan Senwei, et al. Non-isothermal reduction kinetics of calcium ferrite and hematite[J]. Chinese Journal of Engineering, 2018, 40(11): 1317−1324.
|
| [23] |
Li Gang. Research on sintering technology of vanadium titanomagnetite with the preformed calcium ferrite[D]. Chongqing: Chongqing University, 2022. (李刚. 钒钛磁铁矿预制铁酸钙烧结技术研究 [D]. 重庆: 重庆大学, 2022.
Li Gang. Research on sintering technology of vanadium titanomagnetite with the preformed calcium ferrite[D]. Chongqing: Chongqing University, 2022.
|
| [24] |
Sayama S, Ueda Y, Yokoyama S, et al. Carbon deposition in the reduction of iron ore by CO under high pressure[J]. Tetsu-to-Hagane, 1975, 61(8): 2115−2117.
|
| [25] |
Ding Chengyi, Lü Xuewei, Xuan Senwei, et al. Powder reduction kinetics of dicalcium ferrite, calcium ferrite, and hematite: Measurement and modeling[J]. Advanced Powder Technology, 2017, 28(10): 2503−2513.
|
| [26] |
Ding Chengyi, Lü Xuewei, Xuan Senwei, et al. Effect of Ca-Fe oxides additives on NOx reduction in iron ore sintering[J]. Journal of Iron and Steel Research, 2017, 24(12): 1184−1189.
|
| [27] |
Ding Chengyi. Crystallization and reduction behavior of calcium ferrites[D]. Chongqing: Chongqing University, 2019. (丁成义. 复合铁酸钙结晶和还原行为研究[D]. 重庆: 重庆大学, 2019.
Ding Chengyi. Crystallization and reduction behavior of calcium ferrites[D]. Chongqing: Chongqing University, 2019.
|
| [28] |
Li Gang, Chen Dan, You Yang, et al. Andradite titanium: Preparation, characterization and metallurgical performance[J]. Journal of the American Ceramic Society, 2021,105(3):2209−2220.
|