Volume 45 Issue 3
Jul.  2024
Turn off MathJax
Article Contents
Yu Jinrui, Yu Xinhong, Zhang Yu, Feng Yisheng, Zhao Ertuan. Effect of Mn content on microstructure and mechanical properties of medium carbon low Si bainitic steel[J]. IRON STEEL VANADIUM TITANIUM, 2024, 45(3): 147-154. doi: 10.7513/j.issn.1004-7638.2024.03.020
Citation: Yu Jinrui, Yu Xinhong, Zhang Yu, Feng Yisheng, Zhao Ertuan. Effect of Mn content on microstructure and mechanical properties of medium carbon low Si bainitic steel[J]. IRON STEEL VANADIUM TITANIUM, 2024, 45(3): 147-154. doi: 10.7513/j.issn.1004-7638.2024.03.020

Effect of Mn content on microstructure and mechanical properties of medium carbon low Si bainitic steel

doi: 10.7513/j.issn.1004-7638.2024.03.020
More Information
  • Received Date: 2023-06-14
  • Publish Date: 2024-07-02
  • Four medium-carbon low-Si bainitic steels with different Mn contents(0.76%, 1.29%, 1.53%, 1.85%) were designed and smelted. The effect of manganese content on the microstructure and mechanical properties of the test steel was studied by OM, SEM, XRD and tensile and impact tests. The results show that the phase transformation between ferrite and pearlite is inhibited by manganese. Manganese addition decreases the nucleation driving force of bainite, causing the declining maximum transformation amount of bainite, and increases the size and content of the remaining supercooled austenite after bainite transformation stagnation. Most of the remaining austenite decomposes into coarse carbide and ferrite mixed structure in the subsequent isothermal process, and forms local coarse structure around the bainite lath. A small amount of the austenite stabilize to room temperature and then form retained austenite. With the increase of manganese content, the yield strength and impact toughness of the test steel gradually decrease, and the tensile strength firstly increase and then decrease due to the competition between alloying and microstructure coarsening. Considering the complexity of heat treatment and balanced mechanical properties of bainitic steel, 1.29% manganese content is proposed for spring steel.
  • loading
  • [1]
    Liu C, Chen Y, Zhang C, et al. Enhanced strength and plasticity in a novel 55Si2MnMoV spring steel via austempering[J]. Materials Science and Engineering:A, 2021,825:141887. doi: 10.1016/j.msea.2021.141887
    [2]
    Yang Lin, Yu Chibin, Bao Siqian, et al. Analysis on decarburization of 50CrV4 steel and its effect on hardenability[J]. Iron Steel Vanadium Titanium, 2013,34(2):88−92. (杨林, 余驰斌, 鲍思前, 等. 50CrV4脱碳分析及其对淬硬性的影响[J]. 钢铁钒钛, 2013,34(2):88−92.

    Yang Lin, Yu Chibin, Bao Siqian, et al. Analysis on Decarburization of 50 CrV4 Steel and Its Effect on Hardenability[J]. Iron Steel Vanadium Titanium. 2013, 34(02): 88-92.
    [3]
    Meng Jian. Study on microalloying and heat treatment process of spring steel 55SiCrV[J]. Iron Steel Vanadium Titanium, 2021,42(3):187−192. (蒙坚. 弹簧钢55SiCrV的微合金化及热处理工艺研究[J]. 钢铁钒钛, 2021,42(3):187−192. doi: 10.7513/j.issn.1004-7638.2021.03.028

    Meng Jian. Study on microalloying and heat treatment process of spring steel 55 SiCrV[J]. Iron Steel Vanadium Titanium. 2021, 42(3): 187-192. doi: 10.7513/j.issn.1004-7638.2021.03.028
    [4]
    Bajželj A, Burja J. Influence of austenitisation temperature and time on martensitic and isothermal bainite phase transformation of spring steel[J]. Metals, 2022,12(8):1373. doi: 10.3390/met12081373
    [5]
    Huang Jingxin, Bai Bingzhe, Yu Guichun, et al. Properties of a new type bainitic steel for autombile leaf spring[J]. Heat Treatment of Metals, 2004,(11):1−5. (黄敬新, 白秉哲, 余贵春, 等. 新型贝氏体钢汽车板簧材料的性能研究[J]. 金属热处理, 2004,(11):1−5. doi: 10.3969/j.issn.0254-6051.2004.11.001

    Huang Jingxin, Bai Bingzhe, Yu Guichun, et al. Properties of a new type bainitic steel for autombile leaf spring[J]. Heat Treatment of Metals. 2004(11): 1-5. doi: 10.3969/j.issn.0254-6051.2004.11.001
    [6]
    Yang Zhongrun, Wang Xinyi, Chen Daming, et al. Heat treatment of medium carbon bainitic spring steel[J]. Materials for Mechanical Engineering, 1992,(3):55−57. (杨忠润, 王新祎, 陈大明, 等. 中碳贝氏体弹簧钢的热处理[J]. 机械工程材料, 1992,(3):55−57.

    Yang Zhongrun, Wang Xinwei, Chen Daming, et al. Heat treatment of medium carbon bainitic spring steel[J]. Materials for Mechanical Engineering. 1992(03): 55-57.
    [7]
    Xu Guang, Yang Jing, Zou Hang, et al. Research on microstructure and property of V-alloyed superbainite steel[J]. Iron Steel Vanadium Titanium, 2011,32(4):26−30. (徐光, 杨静, 邹航, 等. 含钒超级贝氏体钢组织和性能研究[J]. 钢铁钒钛, 2011,32(4):26−30.

    Xu Guang, Yang Jing, Zou Hang, et al. Research on Microstructure and Property of V-alloyed Superbainite Steel[J]. Iron Steel Vanadium Titanium. 2011, 32(4): 26-30.
    [8]
    安佰锋, 高古辉, 白秉哲, 等. Mn系贝氏体钢的研究与新进展[C]//第十一届全国热处理大会论文集. 太原: 中国机械工程学会热处理分会, 2015.

    An Baifeng, Gao Guhui, Bai Bingzhe, et al. Latest developments of Mn series bainitic steels[C]//Proceedings of the 11th National Heat Treatment Conference. Taiyuan: Heat Treatment Branch of China Society of Mechanical Engineering, 2015.
    [9]
    Ji Fangfang, Hui Weijun, Wu Yongsheng, et al. Microstructure and mechanical properties of cold hardening microalloyed steel with different manganese contents[J]. Heat Treatment of Metals, 2010,35(10):33−36. (计芳芳, 惠卫军, 吴勇生, 等. 不同锰含量冷作强化非调质钢的微观组织和力学性能[J]. 金属热处理, 2010,35(10):33−36. doi: 10.13251/j.issn.0254-6051.2010.10.008

    J. I. Fang-Fang, Hui Wei-Jun, W. U. Yong-Sheng, et al. Microstructure and mechanical properties of cold hardening microalloyed steel with different manganese contents[J]. Heat Treatment of Metals. 2010, 35(10): 33-36. doi: 10.13251/j.issn.0254-6051.2010.10.008
    [10]
    张绍龙, 周雯, 胡锋, 等. 锰对贝氏体钢中残余奥氏体回火稳定性的影响[J]. 钢铁, 2023(2): 113−125.

    Zhang Shaolong, Zhou Wen, Hu Feng, et al. Effect of Mn on tempering stability of retained austenite in bainite steel[J]. Iron and Steel, 2023(2): 113−125.
    [11]
    Zhu Jiaqi, Tan Zhunli, Gao Bo, et al. Effect of Mn content on microstructure and mechanical properties of bainite wheel steel[J]. China Railway Science, 2020,41(4):91−98. (祝家祺, 谭谆礼, 高博, 等. 锰对贝氏体车轮钢组织和力学性能的影响[J]. 中国铁道科学, 2020,41(4):91−98. doi: 10.3969/j.issn.1001-4632.2020.04.11

    Zhu Jiaqi, Tan Zhunli, Gao Bo, et al. Effect of Mn content on microstructure and mechanical properties of bainite wheel steel[J]. China Railway Science. 2020, 41(04): 91-98. doi: 10.3969/j.issn.1001-4632.2020.04.11
    [12]
    Long X Y, Zhang F C, Zhang C Y. Effect of Mn content on low-cycle fatigue behaviors of low-carbon bainitic steel[J]. Materials Science and Engineering. A, Structural Materials:Properties, Microstructure and Processing, 2017,697:111−118. doi: 10.1016/j.msea.2017.04.089
    [13]
    Liu Shikai, Yang Liu, Zhang Jun, et al. Influence of Si and Mn on morphology of bainitic ferrite and kinetics of bainite transformation in Fe-C alloy[J]. Acta Metallurgica Sinica, 1992,(12):1−8. (刘世楷, 杨柳, 张筠, 等. Si和Mn对钢中贝氏体形态和转变动力学的影响[J]. 金属学报, 1992,(12):1−8.

    Liu Shikai, Yang Liu, Zhang Jun, et al. Influence of Si and Mn on morphology of bainitic ferrite and kinetics of bainite transformation in Fe-C alloy[J]. Acta Metallurgica Sinica. 1992(12): 1-8.
    [14]
    Zheng Hua, Hu Feng, Ke Rui, et al. Effect of Si on microstructure and mechanical properties of low temperature bainitic steel with medium carbon[J]. Heat Treatment of Metals, 2020,45(9):203−209. (郑花, 胡锋, 柯睿, 等. 硅对中碳低温贝氏体钢组织与性能的影响[J]. 金属热处理, 2020,45(9):203−209. doi: 10.13251/j.issn.0254-6051.2020.09.037

    Zheng Hua, Hu Feng, Ke Rui, et al. Effect of Si on microstructure and mechanical properties of low temperature bainitic steel with medium carbon[J]. Heat Treatment of Metals. 2020, 45(09): 203-209. doi: 10.13251/j.issn.0254-6051.2020.09.037
    [15]
    Qin Xiaofeng, Li Hui, Chen Rushu, et al. Effect of surface condition on fatigue performanoe of 60 S2 CrVAT spring steel[J]. Journal of Dalian Jiaotong University, 2008,(2):74−78. (秦晓锋, 李辉, 陈汝淑, 等. 表面状态对60Si2CrVAT弹簧钢疲劳性能的影响[J]. 大连交通大学学报, 2008,(2):74−78. doi: 10.3969/j.issn.1673-9590.2008.02.019

    Qin Xiaofeng, Li Hui, Chen Rushu, et al. Effect of surface condition on fatigue performanoe of 60 S2 CrVAT spring steel[J]. Journal of Dalian Jiaotong University. 2008(02): 74-78. doi: 10.3969/j.issn.1673-9590.2008.02.019
    [16]
    Fang Hongsheng, Feng Chun, Zheng Yankang, et al. Precipitation of the carbides in lower bainite[J]. Acta Metallurgiga Sinica, 2007,(6):583−588. (方鸿生, 冯春, 郑燕康, 等. 下贝氏体中碳化物的析出[J]. 金属学报, 2007,(6):583−588. doi: 10.3321/j.issn:0412-1961.2007.06.006

    Fang Hongsheng, Feng Chun, Zheng Yankang, et al. Precipitation of the carbides in lower bainite[J]. Acta Metallurgiga Sinica. 2007(06): 583-588. doi: 10.3321/j.issn:0412-1961.2007.06.006
    [17]
    Huang Weigang, Fang Hongsheng, Zheng Yankang. Effect of silicon content on the microstructure and properties in Mn-B air-cooled bainitic steel[J]. Transactions of Metal Heat Treatment, 1997,(1):10−15. (黄维刚, 方鸿生, 郑燕康. 硅对MN-B系空冷贝氏体钢组织与性能的影响[J]. 金属热处理学报, 1997,(1):10−15.

    Wei Gang Huang, Hong Sheng Fang, Yan Kang Zheng. Effect of silicon content on the microstructure and properties in Mn-B air-cooled bainitic steel [J]. Transactions of Metal Heat Treatment. 1997(1): 10-15.
    [18]
    Ruijie Z, Zheng C, Bo L, et al. In-situ investigation of composition segregation and deformation streamline in bainitic steel on mechanical properties[J]. Materials Science and Engineering:A, 2022,855:143949. doi: 10.1016/j.msea.2022.143949
    [19]
    Goulas C, Mecozzi M G, Sietsma J. Bainite formation in medium-carbon low-silicon spring steels accounting for chemical segregation[J]. Metallurgical and Materials Transactions A, Physical Metallurgy and Materials Science, 2016,47(6):3077−3087. doi: 10.1007/s11661-016-3418-6
    [20]
    Liu Zongchang, Wang Haiyan, Wang Yufeng, et al. Morphology and formation mechanism of bainitic carbide[J]. Transactions of Materials and Heat Treatmen, 2008,(1):32−37. (刘宗昌, 王海燕, 王玉峰, 等. 贝氏体碳化物的形貌及形成机制[J]. 材料热处理学报, 2008,(1):32−37.

    Liu Zongchang, Wang Haiyan, Wang Yufeng, et al. Morphology and formation mechanism of bainitic carbide[J]. Transactions of Materials and Heat Treatmen. 2008(01): 32-37.
    [21]
    Tan X, Xu Y, Yang X, et al. Austenite stabilization and high strength-elongation product of a low silicon aluminum-free hot-rolled directly quenched and dynamically partitioned steel[J]. Materials Characterization, 2015,104:23−30. doi: 10.1016/j.matchar.2015.03.022
    [22]
    Bhadeshia H K D H. 钢中贝氏体[M]. 秦皇岛: 燕山大学出版社, 2020.

    Bhadeshia H K D H. Bainite in steels[M]. Qinhuangdao: Yanshan University Press, 2020.
    [23]
    Królicka A, Janik A, Ak A, et al. The qualitative-quantitative approach to microstructural characterization of nanostructured bainitic steels using electron microscopy methods[J]. Materials Science-Poland, 2021,39(2):188−199. doi: 10.2478/msp-2021-0017
    [24]
    Cornide J, Garcia-Mateo C, Capdevila C, et al. An assessment of the contributing factors to the nanoscale structural refinement of advanced bainitic steels[J]. Journal of Alloys and Compounds, 2013,577:S43−S47. doi: 10.1016/j.jallcom.2011.11.066
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(2)

    Article Metrics

    Article views (290) PDF downloads(22) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return