| Citation: | Wang Zhangyin, Chen Liang, Chen Xiong, Li Pingfan. Formation and evolution of non-metallic inclusions in 20CrMnTiH gear steel during LF-RH-CC process[J]. IRON STEEL VANADIUM TITANIUM, 2024, 45(3): 155-161. doi: 10.7513/j.issn.1004-7638.2024.03.021 |
| [1] |
Fuchs D, Tobie T, Stahl K. Challenges in determination of microscopic degree of cleanliness in ultra-clean gear steels[J]. Journal of Iron and Steel Research International, 2022,29(10):1583−1600. doi: 10.1007/s42243-021-00730-y
|
| [2] |
Juan R, Wang M, Li L, et al. Relationship between inclusions and internal defect spatial distribution in large forging piece for wind power generation gear[J]. ISIJ International, 2022,62(1):133−141. doi: 10.2355/isijinternational.ISIJINT-2021-356
|
| [3] |
Liu R, Sun D, Hou J, et al. Fatigue life analysis of wind turbine gear with oxide inclusion[J]. Fatigue Fracture of Engineering Materials Structures, 2021,44(3):776−787. doi: 10.1111/ffe.13393
|
| [4] |
Ji Sha, Zhang Lifeng, Luo Yan, et al. Effect of calcium treatment on nonmetallic inclusions in 20CrMnTiH gear steel[J]. Chinese Journal of Engineering, 2021,43(6):825−834. (季莎, 张立峰, 罗艳, 等. 钙处理对20CrMnTiH齿轮钢中非金属夹杂物的影响[J]. 工程科学学报, 2021,43(6):825−834.
Ji Sha, Zhang Lifeng, Luo Yan, et al. Effect of calcium treatment on nonmetallic inclusions in 20 CrMnTiH gear steel [J]. Chinese Journal of Engineering, 2021, 43(6): 825-834.
|
| [5] |
Wang Kunpeng, Wang Ying, Xu Jianfei, et al. Investigation on evolution of inclusions in bearing steel during secondary refining[J]. Iron and Steel, 2022,57(6):42−49. (王昆鹏, 王郢, 徐建飞, 等. 轴承钢二次精炼过程夹杂物演变规律[J]. 钢铁, 2022,57(6):42−49. doi: 10.13228/j.boyuan.issn0449-749x.20210660
Wang Kunpeng, Wang Ying, Xu Jianfei, et al. Investigation on evolution of inclusions in bearing steel during secondary refining [J]. Iron and Steel, 2022, 57 (6): 42-49. doi: 10.13228/j.boyuan.issn0449-749x.20210660
|
| [6] |
Yang Guang, Yang Wen, Zhang Lifeng. Calcium treatment modification and influencing factors of inclusions in aluminum-killed steel[J]. Iron and Steel, 2022,57(12):66−78. (杨光, 杨文, 张立峰. 铝镇静钢中夹杂物钙处理改性及其影响因素[J]. 钢铁, 2022,57(12):66−78. doi: 10.13228/j.boyuan.issn0449-749x.20220313
Yang Guang, Yang Wen, Zhang Lifeng. Calcium treatment modification and influencing factors of inclusions in aluminum-killed steel [J]. Iron and Steel, 2022, 57(12): 66-78. doi: 10.13228/j.boyuan.issn0449-749x.20220313
|
| [7] |
Dieter Janke Z M, Peter V, Heinen A. Improvement of castability and quality of continuously cast steel[J]. ISIJ International, 2000,40(1):31−39. doi: 10.2355/isijinternational.40.31
|
| [8] |
Gollapalli V, Raomb V, Karmached P S, et al. Modification of oxide inclusions in calcium-treated Al-killed high sulphur steels[J]. Ironmaking & Steelmaking, 2019,46(7):663−670.
|
| [9] |
Pretorius E B, Oltman H G, Cash T. The effective modification of spinel inclusions by Ca treatment in LCAK steel[J]. Iron & Steel Technology, 2011,7(7):31−44.
|
| [10] |
Xu J, Huang F, Wang X. Formation mechanism of CaS-Al2O3 inclusions in low sulfur Al-killed steel after calcium treatment[J]. Metall. Mater. Trans. B, 2016,47(2):1217−1227. doi: 10.1007/s11663-016-0599-8
|
| [11] |
Choudhary S K, Ghosh A. Thermodynamic evaluation of formation of oxide–sulfide duplex inclusions in steel[J]. ISIJ International, 2008,48(11):1552−1559. doi: 10.2355/isijinternational.48.1552
|
| [12] |
Verma N, Pistorius P C, Fruehan R J, et al. Calcium modification of spinel inclusions in aluminum-killed steel: Reaction steps[J]. Metall. Mater. Trans. B, 2012,43(4):830−840. doi: 10.1007/s11663-012-9660-4
|
| [13] |
Xie Y, Meng X, Deng X, et al. Evolution of sulphide inclusion in Mg–Ca treating gear steel [J]. Ironmaking & Steelmaking, 2022: 1−7.
|
| [14] |
Xu G, Jiang Z, Li Y. Formation mechanism of CaS-bearing inclusions and the rolling deformation in Al-killed, low-alloy steel with Ca treatment[J]. Metall. Mater. Trans. B, 2016,47(4):2411−2420. doi: 10.1007/s11663-016-0695-9
|
| [15] |
Zhao D, Li H, Bao C, et al. Inclusion evolution during modification of alumina inclusions by calcium in liquid steel and deformation during hot rolling process[J]. ISIJ International, 2015,55(10):2115−2124. doi: 10.2355/isijinternational.ISIJINT-2015-064
|
| [16] |
Bielefeldt W V, Vilela A C F. Computational thermodynamic study of inclusions formation in the continuous casting of SAE 8620 steel[J]. Steel Research International, 2010,81(12):1064−1069. doi: 10.1002/srin.201000057
|
| [17] |
Ahmad H, Zhao B, Sha L, et al. Formation of complex inclusions in gear steels for modification of manganese sulphide[J]. Metals, 2021,11(12):2051−2064. doi: 10.3390/met11122051
|
| [18] |
Ren Y, Zhang L, Ling H, et al. A reaction model for prediction of inclusion evolution during reoxidation of Ca-treated Al-killed steels in tundish[J]. Metall. Mater. Trans. B, 2017,48(3):1−6.
|
| [19] |
Gao Shengya, Jiang Min, Hou Zewang, et al. Effect of calciumtreatment on non-metallic inclusions in high carbon aluminum killed steel(Article)[J]. Iron and Steel, 2017,52(4):25−30. (高胜亚, 姜敏, 侯泽旺, 等. 钙处理对高碳铝镇静钢中夹杂物的影响[J]. 钢铁, 2017,52(4):25−30. doi: 10.13228/j.boyuan.issn0449-749x.20160311
Gao Shengya, Jiang Min, Hou Zewang, et al. Effect of calciumtreatment on non-metallic inclusions in high carbon aluminum killed steel(Article) [J]. Iron and Steel, 2017, 52(4): 25-30. doi: 10.13228/j.boyuan.issn0449-749x.20160311
|
| [20] |
Yang G, Wang X, Huang F, et al. Influence of calcium addition on inclusions in LCAK steel with ultralow sulfur content[J]. Metall. Mater. Trans. B, 2014,46(1):145−154.
|
| [21] |
Hou Z, Jiang M, Yang E, et al. Inclusion characterization in aluminum-deoxidized special steel with certain sulfur content under combined influences of slag refining, calcium treatment, and reoxidation[J]. ISIJ International, 2018,49(6):3056−3066.
|
| [22] |
Kim T S, Chung Y, Holappa L, et al. Effect of rice husk ash insulation powder on the reoxidation behavior of molten steel in continuous casting tundish[J]. Metall. Mater. Trans. B, 2017,48(3):1736−1747. doi: 10.1007/s11663-017-0971-3
|
| [23] |
Shi C, Zheng D, Guo B, et al. Evolution of oxide-sulfide complex inclusions and its correlation with steel cleanliness during electroslag rapid remelting (ESRR) of tool steel[J]. Metall. Mater. Trans. B, 2018,49(6):3390−3402. doi: 10.1007/s11663-018-1398-1
|