Volume 45 Issue 3
Jul.  2024
Turn off MathJax
Article Contents
Ji Shuai, Yuan Jiale, Liu Zhongjun. Research on preparation of Fe-5%Si porous material and its permeability[J]. IRON STEEL VANADIUM TITANIUM, 2024, 45(3): 176-181, 187. doi: 10.7513/j.issn.1004-7638.2024.03.024
Citation: Ji Shuai, Yuan Jiale, Liu Zhongjun. Research on preparation of Fe-5%Si porous material and its permeability[J]. IRON STEEL VANADIUM TITANIUM, 2024, 45(3): 176-181, 187. doi: 10.7513/j.issn.1004-7638.2024.03.024

Research on preparation of Fe-5%Si porous material and its permeability

doi: 10.7513/j.issn.1004-7638.2024.03.024
More Information
  • Received Date: 2023-09-19
  • Publish Date: 2024-07-02
  • Three groups of the same Fe-5%Si mixed powder were sintered at high temperature at 1050 , 1100 ℃ and 1150 ℃, respectively, and held for 2 h. Metallographic (OM) and scanning (SEM) microstructure observation and XRD phase analysis were performed for each sample, and the gas permeability was tested by self-assembled porous material performance detector. The results show that higher sintering temperature can generate smaller-pore porous material. The film layer will form on the cross section of the sample sintered at 1150 ℃. The cross section of Fe-5%Si porous material is composed of oxides of Fe and Si, and the higher the sintering temperature, the fewer types of oxides. There are SiO2, Fe2O3, FeO and Fe2O4 when sintered at 1050 ℃, Fe3O4, FeO and SiO2 at 1100 ℃, and FeO and SiO2 at 1150℃. The gas flow rate of the sample at 1050 ℃ increases significantly with the increase of ventilation pressure. When the ventilation pressure is 140 kPa, the gas flow rate is about 9200 mL/min. The gas flow rate of samples sintered at 1100 ℃ and 1150 ℃ has little change with the increase of ventilation pressure. When the ventilation pressure is 140 kPa, the gas flow rate of both samples is about 1000 mL/min.
  • loading
  • [1]
    Xin Fengxian, Jiang Changyong, Lu Tianjian, et al. Equivalent gradient properties of porous material with macro void and panel structures[J]. Journal of the Acoustical Society of America, 2016, 140(4): 2993.
    [2]
    Chen Fei, Ma Lingling, Shen Qiang, et al. Pressureless sintering of silicon nitride ceramics with porous gradient structure for gas filter application[J]. International Journal of Materials Product Technology, 2011,42(1/2):3. doi: 10.1504/IJMPT.2011.044909
    [3]
    Liu Zhongjun, Liu Zhuomeng, Ji Shuai, et al. Low cost Ti-Si intermetallic compound membrane with nano-pores synthesized by in-situ reactive sintering process[J]. Scientific Reports, 2020, 10(1): 16750.
    [4]
    Liu Zhongjun, Liu Zhuomeng, Ji Shuai, et al. Fabrication of Ti-Si intermetallic compound porous membrane using an in-situ reactive sintering process[J]. Mater Lett, 2020,271:127786. doi: 10.1016/j.matlet.2020.127786
    [5]
    Zhao Shuang, Xie Kai, Guo Yu, et al. Fabrication and biological activity of 3D-printed polycaprolactone/magnesium porous scaffolds for critical size bone defect repair[J]. ACS Biomaterials Science Engineering, 2020,12(4):264−275.
    [6]
    Hindy A, Farahmand F, Pourdanesh F, et al. Synthesis and characterization of 3D-printed functionally graded porous titanium alloy[J]. Journal of Materials Science, 2020,55(6):267−272.
    [7]
    Zhang Zhijia, Zhao Jun, Qiao Zhijun. Nonsolvent-induced phase separation-derived TiO2 nanotube arrays/porous Ti electrode as high-energy-density anode for lithium-ion batteries[J]. Rare Metals, 2021,40(2):393−399. doi: 10.1007/s12598-020-01571-6
    [8]
    Singh H, Saxena P, Puri Y M. Materials selection and manufacturing of metal membranes for industrial applications[J]. Mater Lett, 2020,269(3):127557.
    [9]
    Zhang Yijie, Li Xianfeng, Chen Dong, et al. Si doping effects on the photocatalytic activity of TiO2 nanotubes film prepared by an anodization process[J]. Scripta Materialia, 2009,60(7):543−546. doi: 10.1016/j.scriptamat.2008.12.004
    [10]
    Yu Yongmei, Guo Chengjian, Zhang Xiaoling, et al. Dynamic recovery model of Fe-Si alloy steel[J]. Heat Treatment of Metals, 2018,43(5):28−33. (于永梅, 郭成健, 张小玲, 等. Fe- Si 合金高温变形流变应力的本构模型[J]. 金属热处理, 2018,43(5):28−33.

    Yu Yongmei, Guo Chengjian, Zhang Xiaoling, et al. Dynamic recovery model of Fe-Si alloy steel[J]. Heat Treatment of Metals, 2018, 43(5): 28−33.
    [11]
    Guo Fengxue, Wu Jie, Chen Yunbo, et al. Pore morphologies and compressive strength of TiC/NiAl porous composites[J]. Heat Treatment of Metals, 2020,45(5):1−5. (郭丰雪, 吴杰, 陈蕴博, 等. 多孔 TiC/NiAl 复合材料的孔洞形貌及抗压强度[J]. 金属热处理, 2020,45(5):1−5.

    Guo Fengxue, Wu Jie, Chen Yunbo, et al. Pore morphologies and compressive strength of TiC/NiAl porous composites[J]. Heat Treatment of Metals, 2020, 45(5): 1−5.
    [12]
    Yang Jianming, Tang Yang, Gu Hai, et al. Research and application status of 3D printing porous structures[J]. Materials Reports, 2018,32(15):163−173. (杨建明, 汤阳, 顾海, 等. 3D打印制备多孔结构的研究与应用现状[J]. 材料导报, 2018,32(15):163−173. doi: 10.11896/j.issn.1005-023X.2018.15.020

    Yang Jianming, Tang Yang, Gu Hai, et al. Research and application status of 3D printing porous structures[J]. Materials Reports, 2018, 32(15): 163−173. doi: 10.11896/j.issn.1005-023X.2018.15.020
    [13]
    Zhao Shu, Xie Kang, Guo Yue, et al. Fabrication and biological activity of 3D-printed polycaprolactone/magnesium porous scaffolds for critical size bone defect repair[J]. Acs Biomaterials Science Engineering, 2020,12(4):264−275.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)

    Article Metrics

    Article views (233) PDF downloads(11) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return