Volume 45 Issue 4
Aug.  2024
Turn off MathJax
Article Contents
Du Jinjing, Zhang Xuan, Zhou Yu, Cui Xinxin, Zhu Jun, Zuo Heng, Wang Bin, Bao Yanru, Liu Jingtian, Guo Yuehao. Study on the corrosion resistance of vanadium-based V3TiNi0.56Crx (x=0, 0.2, 0.4, 0.6)/NiMoW composite cathode for hydrogen evolution[J]. IRON STEEL VANADIUM TITANIUM, 2024, 45(4): 48-53. doi: 10.7513/j.issn.1004-7638.2024.04.008
Citation: Du Jinjing, Zhang Xuan, Zhou Yu, Cui Xinxin, Zhu Jun, Zuo Heng, Wang Bin, Bao Yanru, Liu Jingtian, Guo Yuehao. Study on the corrosion resistance of vanadium-based V3TiNi0.56Crx (x=0, 0.2, 0.4, 0.6)/NiMoW composite cathode for hydrogen evolution[J]. IRON STEEL VANADIUM TITANIUM, 2024, 45(4): 48-53. doi: 10.7513/j.issn.1004-7638.2024.04.008

Study on the corrosion resistance of vanadium-based V3TiNi0.56Crx (x=0, 0.2, 0.4, 0.6)/NiMoW composite cathode for hydrogen evolution

doi: 10.7513/j.issn.1004-7638.2024.04.008
More Information
  • Received Date: 2023-12-20
  • Publish Date: 2024-08-30
  • This article mainly studied the influence of Cr element on the electrocatalytic performance and corrosion resistance of vanadium-based V3TiNi0.56Crx(x=0,0.2,0.4,0.6)/NiMoW composite cathode for hydrogen evolution. The phase, morphology, electrocatalytic performance, and corrosion resistance of V3TiNi0.56Crx(x=0,0.2,0.4,0.6)/NiMoW alloy during the electrocatalytic process is analyzed. A passivation film is formed on the surface of the matrix alloy, which can create a passivation zone in the electrochemical corrosion process of the matrix material. It is considered to contain Ni and Cr interstitial substituents. The electrocatalytic ability of vanadium-based composite cathode for hydrogen evolution slightly decreases. The self-corrosion current decreases by 3.61 mA/cm and the self-corrosion potential shifts forward by 0.154 V, which is calculated by the polarization curve extrapolation method. After long-term electrolysis, the amount of gaps formed on its surface decrease, and only slight changes existed in the amplitude of current density change, indicating that its corrosion resistance and long-term stability have been improved.
  • loading
  • [1]
    Yu Hongmei, Shao Zhigang, Hou Ming, et al. Hydrogen production by water electrolysis: Progress and suggestions[J]. Strategic Study of CAE, 2021,23(2):146-152. (俞红梅, 邵志刚, 侯明, 等. 电解水制氢技术研究进展与发展建议[J]. 中国工程科学, 2021,23(2):146-152. doi: 10.15302/J-SSCAE-2021.02.020

    Yu Hongmei, Shao Zhigang, Hou Ming, et al. Hydrogen production by water electrolysis: Progress and suggestions[J]. Strategic Study of CAE, 2021, 23(2): 146-152. doi: 10.15302/J-SSCAE-2021.02.020
    [2]
    Bai Jing. Planning leads and promotes the high-quality leapfrog development of renewable energy —Nine departments jointly issue the "14th Five Year Plan for Renewable Energy Development"[J]. Science & Technology Industry of China, 2022(8): 26-27. (白静. 规划引领, 推动可再生能源高质量跃升发展——九部门联合印发《“十四五”可再生能源发展规划》[J]. 中国科技产业, 2022(8): 26-27.

    Bai Jing. Planning leads and promotes the high-quality leapfrog development of renewable energy —Nine departments jointly issue the "14th Five Year Plan for Renewable Energy Development"[J]. Science & Technology Industry of China, 2022(8): 26-27.
    [3]
    Navas Anguita Z, García Gusano D, Dufour J, et al. Revisiting the role of steam methane reforming with CO2 capture and storage for long-term hydrogen production[J]. Science Total Environment, 2021,771:145432. doi: 10.1016/j.scitotenv.2021.145432
    [4]
    Li Jinghong. Advanced battery materials[M]. Beijing: Chemical Industry Press, 2004. (李景虹. 先进电池材料[M]. 北京: 化学工业出版社, 2004.

    Li Jinghong. Advanced battery materials[M]. Beijing: Chemical Industry Press, 2004.
    [5]
    Hu Zilong. Hydrogen storage materials[M]. Beijing: Chemical Industry Press, 2002. (胡子龙. 贮氢材料[M]. 北京: 化学工业出版社, 2002.

    Hu Zilong. Hydrogen storage materials[M]. Beijing: Chemical Industry Press, 2002.
    [6]
    Wang Mingxing, Wang Yonggang, Kong Hanyang, et al. Development of Fe-containing BCC hydrogen storage alloys with high vanadium concentration[J]. Journal of Alloys and Compounds, 2023,958:170294. doi: 10.1016/j.jallcom.2023.170294
    [7]
    Li Lirong , Luo Long , Chen Liangpan , et al. Nanoscale microstructures and hydrogenation properties of an as-cast vanadium-based medium-entropy alloy[J]. International Journal of Hydrogen Energy, 2023, 48(75): 29230-29239.
    [8]
    Liao Longfei, Li Mingyu, Yin Yongli, et al. Research progress on catalysts of alkaline water electrolysis for hydrogen production[J]. Industrial Catalysis, 2023,31(2):7-11. (廖龙飞, 李明雨, 尹永利, 等. 碱性水电解制氢催化剂研究进展[J]. 工业催化, 2023,31(2):7-11. doi: 10.3969/j.issn.1008-1143.2023.02.002

    Liao Longfei, Li Mingyu, Yin Yongli, et al. Research progress on catalysts of alkaline water electrolysis for hydrogen production[J]. Industrial Catalysis, 2023, 31(2): 7-11. doi: 10.3969/j.issn.1008-1143.2023.02.002
    [9]
    Gao M, Yang C, Zhang Q B, et al. Facile electrochemical preparation of self-supported porous Ni-Mo alloy microsphere films as efficient bifunctional electrocatalysts for water splitting[J]. Journal of Materials Chemistry A, 2017,5(12):5797-5805. doi: 10.1039/C6TA10812A
    [10]
    Wang Bin, Du Jinjing, Li Erhu, et al. Preparation method and application of V-Ti Ni based porous hydrogen evolution cathode material:China, CN110373684B[P]. 2021-06-11. (王斌, 杜金晶, 李二虎, 等. 一种V-Ti-Ni基多孔析氢阴极材料、制备方法及应用: 中国, CN110373684B[P]. 2021-06-11.

    Wang Bin, Du Jinjing, Li Erhu, et al. Preparation method and application of V-Ti Ni based porous hydrogen evolution cathode material: China, CN110373684B[P]. 2021-06-11.
    [11]
    Gao Chenghui, Li Ning. Hydrogen evolution reaction activity of electrodeposited amorphous/nanocrystalline Ni-Mo-La alloy electrode[J]. The Chinese Journal of Nonferrous Metals, 2011,21(11):2819-2824. (高诚辉, 李凝. 电沉积非晶/纳米晶Ni-Mo-La合金电极的析氢性能[J]. 中国有色金属学报, 2011,21(11):2819-2824.

    Gao Chenghui, Li Ning. Hydrogen evolution reaction activity of electrodeposited amorphous/nanocrystalline Ni-Mo-La alloy electrode[J]. The Chinese Journal of Nonferrous Metals, 2011, 21(11): 2819-2824.
    [12]
    Wang Senlin, Zhang Yi. Preparation and electrocatalytic performance of Ni-Mo/LaNi5 porous composite electrode toward hydrogen evolution reaction[J]. Acta Physico-Chimica Sinica, 2011,27(6):1417-1423. (王森林, 张艺. Ni-Mo/LaNi5多孔复合电极的制备及其电催化析氢性能[J]. 物理化学学报, 2011,27(6):1417-1423. doi: 10.3866/PKU.WHXB20110510

    Wang Senlin, Zhang Yi. Preparation and electrocatalytic performance of Ni-Mo/LaNi5 porous composite electrode toward hydrogen evolution reaction[J]. Acta Physico-Chimica Sinica, 2011, 27(6): 1417-1423. doi: 10.3866/PKU.WHXB20110510
    [13]
    Zhang Q A , Lei Y Q , Yang X G , et al. Phase structures and electrochemical properties of Cr-added V3TiNi0.56Hf0.24Mn0.15 alloys [J]. International Journal of Hydrogen Energy, 2000, 25: 997-981.
    [14]
    Liu Shouping, Tian Weiguo, Liu Renlong, et al. Study on the corrosion resistance of V3TiNi0.56Cr x (x=0.1, 0.3) hydrogen storage alloys in alkaline solution[J]. Journal of Functional Materials, 2007,38:1649-1651. (刘守平, 田卫国, 刘仁龙, 等. V3TiNi0.56Cr x (x=0.1, 0.3) 贮氢合金耐碱液腐蚀性能研究[J]. 功能材料, 2007,38:1649-1651.

    Liu Shouping, Tian Weiguo, Liu Renlong, et al. Study on the corrosion resistance of V3TiNi0.56Crx (x=0.1, 0.3) hydrogen storage alloys in alkaline solution[J]. Journal of Functional Materials, 2007, 38: 1649-1651.
    [15]
    Tian Weiguo. Research on the alkaline corrosion resistance of V3TiNi0.56Mx (M=Al, Cr) hydrogen storage alloy[D]. Chongqing: Chongqing University, 2007. (田卫国. V3TiNi0.56Mx (M=Al, Cr) 贮氢合金耐碱液腐蚀性能研究[D]. 重庆: 重庆大学, 2007.

    Tian Weiguo. Research on the alkaline corrosion resistance of V3TiNi0.56Mx (M=Al, Cr) hydrogen storage alloy[D]. Chongqing: Chongqing University, 2007.
    [16]
    Panek J, Kubisztal J, Bierskaiech Bożena. Ni50Mo40Ti10 alloy prepared by mechanicalalloying as electroactive material for hydrogen evolution reaction[J]. Surface & Interface Analysis, 2014,46(10-11):716-720.
    [17]
    Jiao Y, Hong W Z, Li P Y, et al. Metal-organic framework derived Ni/NiO micro-particles with subtle lattice distortions for high-performance electrocatalyst and supercapacitor[J]. Applied Catalysis B:Environmental, 2018,244:732-739.
    [18]
    Dong S Z, Li Y S, Zhao Z L, et al. Reparation of porous Ti-Cu alloy by one-step sintering method and application of hydrogen evolution reaction[J]. Journal of Electroanalytical Chemistry, 2022,918:116448. doi: 10.1016/j.jelechem.2022.116448
    [19]
    Huang Y X, Zhan Z X, Lei T, et al. Amorphous CoFeB on nickel foam as a high efficient electrocatalyst for hydrogen evolution reaction[J]. International Journal of Hydrogen Energy, 2022,47(25):12539-12546. doi: 10.1016/j.ijhydene.2022.01.247
    [20]
    Macdonald D D. On the existence of our metals-based civilization: I. Phase-space analysis[J]. Journal of the Electrochemical Society, 2006,153:B213-B224. doi: 10.1149/1.2195877
    [21]
    Guo Pengfei, Lin Xin, Digby D, et al. Unveiling the transpassive film failure of 3D printing transition alloys[J]. Corrosion Science, 2022,204:110412. doi: 10.1016/j.corsci.2022.110412
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)

    Article Metrics

    Article views (286) PDF downloads(22) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return