Volume 45 Issue 4
Aug.  2024
Turn off MathJax
Article Contents
Xie Hong’en, Zheng Kui, Huang Chu, Zhu Fengxiang, Liu Juan. Change of phase composition and valuable elements in V-Ti pellet during softening-melting and dripping process[J]. IRON STEEL VANADIUM TITANIUM, 2024, 45(4): 105-112, 128. doi: 10.7513/j.issn.1004-7638.2024.04.015
Citation: Xie Hong’en, Zheng Kui, Huang Chu, Zhu Fengxiang, Liu Juan. Change of phase composition and valuable elements in V-Ti pellet during softening-melting and dripping process[J]. IRON STEEL VANADIUM TITANIUM, 2024, 45(4): 105-112, 128. doi: 10.7513/j.issn.1004-7638.2024.04.015

Change of phase composition and valuable elements in V-Ti pellet during softening-melting and dripping process

doi: 10.7513/j.issn.1004-7638.2024.04.015
More Information
  • Received Date: 2023-05-30
  • Publish Date: 2024-08-30
  • The change of phase composition and valuable elements in the process of softening-melting and dripping of acidic V-Ti pellet of Pangang were quantitatively studied by simulating the smelting atmosphere in blast furnace. The results show that Ti and V gradually migrated from titanohematite and ilmenite to slag phase during the softening-melting and dripping process of V-Ti pellet. TiO2 could not only be reduced to Ti into metal iron, but also generate a large amount of titanium carbonitride. In the dripping test, the yield of V in metallic iron was 36.03%, which was much higher than 3.13% of Ti and 17.20% of Si. The absorbing S from coke by slag and metallic iron and the desulfurization reaction between them were carried out simultaneously, and the ratio of S in metallic iron decreased from 72.84% after softening-melting test to 50% after dripping test. Pyroxene and anosovite were more than 80% in the flooding slag of softening-melting test, and more than 70% of V and Ti in this slag were distributed in anosovite. While in residual slag of softening-melting test, pyroxene decreased obviously, olivine and spinel increased obviously, and V and Ti increased obviously in spinel. During the dripping test, TiO2 was gradually reduced until the sum of TiC and TiN mass fraction exceeded 20%, so the slag was gradually transformed from high titanium-type slag with TiO2 mass fraction over 30% to low titanium-type slag with TiO2 mass fraction less than 10%, and anosovie and its V and Ti in the residual slag were significantly reduced, while olivine and its distribution of V and Ti were increased.
  • loading
  • [1]
    Yang Gangqing, Yang Wenkang, Li Xiaosong, et al. Comparative study of microstructure changes in vanadium titanium sinter and ordinary sinter during reduction process[J]. Iron Steel Vanadium Titanium, 2018,39(2):102-109. (杨广庆, 杨文康, 李小松, 等. 钒钛烧结矿与普通烧结矿还原过程中微观结构变化对比研究[J]. 钢铁钒钛, 2018,39(2):102-109.

    Yang Gangqin, Yang Wenkang, Li Xiaosong, et al. Comparative study of microstructure changes in vanadium titanium sinter and ordinary sinter during Reduction Process[J]. Iron Steel Vanadium Titanium, 2018, 39(2): 102-109
    [2]
    Gan Qin, He Qun, Wen Yongcai. Study on influence of MgO on mineral composition and metallurgical properties of V-bearing titaniferous magnetite sinter[J]. Iron and Steel, 2008,43(8):7-11. (甘勤, 何群, 文永才. MgO对钒钛烧结矿矿物组成及冶金性能影响的研究[J]. 钢铁, 2008,43(8):7-11.

    Gan Qin, He Qun, Wen Yongcai. Study on influence of MgO on mineral composition and metallurgical properties of V-bearing titaniferous magnetite sinter[J]. Iron and Steel, 2008, 43(8): 7-11
    [3]
    Bai Dongdong, Han Xiuli, Li Changcun, et al. Influence of mineral structure of vanadium-titanium sinter on its metallurgical properties[J]. Iron Steel Vanadium Titanium, 2018,39(5):111-115. (白冬冬, 韩秀丽, 李昌存, 等. 钒钛烧结矿矿相结构对其冶金性能的影响[J]. 钢铁钒钛, 2018,39(5):111-115.

    Bai Dongdong, Han Xiuli, Li Changcun, et al. Influence of mineral structure of vanadium-titanium sinter on its metallurgical properties[J]. Iron Steel Vanadium Titanium, 2018, 39(5): 111-115
    [4]
    王强. 钒钛磁铁精矿烧结物性及其强化技术的研究[D]. 长沙: 中南大学, 2012.

    Wang Qiang. Research on sintering characteristics of vavadium-tianium magnetite concentrate and strengthening technologies[D]. Changsha: Central South University, 2012.
    [5]
    Zhang Jianliang, Yang Guangqing, Guo Hongwei, et al. Microstructure change of V-Ti magnetite concentrate pellets during reduction[J]. Journal of University of Science and Technology Beijing, 2013,35(1):42-48. (张建良, 杨广庆, 国宏伟, 等. 含钒钛铁矿球团还原过程中微观结构变化[J]. 北京科技大学学报, 2013,35(1):42-48.

    Zhang Jianliang, Yang Guangqin, Guo Hongwei, et al. Microstructure change of V-Ti magnetite concentrate pellets during reduction[J]. Journal of University of Science and technology Beijing, 2013, 35(1): 42-48
    [6]
    Zhan Xing. Anatomical study on smelting vanadium-bearing titanomagnetite in small blast furnace[J]. Iron Steel Vanadium Titanium, 1984,5(2):3-15. (詹星. 小高炉冶炼钒钛磁铁矿解剖研究[J]. 钢铁钒钛, 1984,5(2):3-15.

    Zhan Xin. Anatomical study on smelting vanadium-bearing titanomagnetite in small blast furnace[J]. Iron Steel Vanadium Titanium, 1984, 5(2): 3-15
    [7]
    Song Guocai, Yuan Tianyu, Chen Xiaowu. Study on phase composition of the cohesive dripping zone in BF during smelting V-bearing titaniferrous maganetite sinter[J]. Iron Steel Vanadium Titanium, 1996,17(2):25-27. (宋国才, 苑天宇, 陈小武. 高炉冶炼钒钛烧结矿软熔滴落带物相组成研究[J]. 钢铁钒钛, 1996,17(2):25-27.

    Song Guocai, Yuan Tianyu, Chen Xiaowu. Study on phase composition of the cohesive dripping zone in BF during smelting V-bearing titaniferrous maganetite sinter[J]. Iron Steel Vanadium Titanium, 1996, 17(2): 25-27
    [8]
    Diao Risheng. Difference in behaviors of V-Ti bearing and common iron ores within blast furnace[J]. Iron and Steel, 1996,31(2):12-16, 38. (刁日陞. 钒钛矿与普通矿在高炉各带行为差异的研究[J]. 钢铁, 1996,31(2):12-16, 38.

    Diao Risheng. Difference in behaviors of V-Ti bearing and common iron ores within blast furnace[J]. Iron and Steel, 1996, 31(2): 12-16, 38
    [9]
    Bao Yicheng, Jia Xueqing, Song Guocai. Simulation study on reduction process of softening-melting and dripping zone in blast furnace smelting for vanadium-titanium sinter[J]. Iron Steel Vanadium Titanium, 1993,14(2):1-11. (包毅成, 贾学庆, 宋国才. 钒钛烧结矿高炉冶炼软熔滴落带还原过程模拟研究[J]. 钢铁钒钛, 1993,14(2):1-11.

    Bao Yicheng. Jia Xueqin, Song Guocai. Simulation study on reduction process of softening-melting and dripping zone in blast furnace smelting for vanadium-titanium sinter[J]. Iron Steel Vanadium Titanium, 1993, 14(2): 1−11
    [10]
    程功金. 块状带高铬型钒钛磁铁矿还原动力学及有价组元迁移行为的研究[D]. 沈阳: 东北大学, 2013.

    Cheng Gongjin. Study on kinetics of high chromia vanadium-titanium magnetite reduction and migration behavior of valuable elements in lumpy zone[D]. Shenyang: Northeatern University, 2013.
    [11]
    刘建兴. 软熔滴落带高铬型钒钛磁铁矿有价组元迁移机理[D]. 沈阳: 东北大学, 2013.

    Liu Jianxing. The migration mechanism of valuable components for high chromia vanadium-titanium magnetite in cohesive zone[D]. Shenyang: Northeatern University, 2013.
    [12]
    Wang Hongtao, Zhao Wei, Chu Mansheng, et al. Effect and function mechanism of sinter basicity on softening-melting behaviors of mixed burden made from chromium-bearing vanadium-titanium magnetite[J]. Journal of Central South University, 2017,24:39.
    [13]
    Liu Songli, Bai Chenguang, Hu Tu, et al. Quick and direct reduction process of vanadium and titanium ore concentrate with carbon-containing pellets at high temperature[J]. Journal of Chongqing University, 2011,34(1):60-65. (刘松利, 白晨光, 胡途, 等. 钒钛铁精矿内配碳球团高温快速直接还原历程[J]. 重庆大学学报, 2011,34(1):60-65.

    Liu Songli, Bai Chenguang, Hu Tu, et al. Quick and direct reduction process of vanadium and titanium ore concentrate with carbon-containing pellets at high temperature[J]. Journal of Chongqing University, 34(1): 60-65.
    [14]
    Chen Shuangyin, Tang Yu, Chu Mansheng, et al. Reduction process of vanadium titano-magnetite with coal powder[J]. The Chinese Journal of Process Engineering, 2013,13(2):236-240. (陈双印, 唐钰, 储满生, 等. 钒钛磁铁矿的煤粉还原过程[J]. 过程工程学报, 2013,13(2):236-240.

    Chen Shuangyin, Tang Jue, Chu Mansheng, et al. Reduction process of vanadium titano-magnetite with coal powder[J]. The Chinese Journal of Process Engineering, 2013, 13(2): 236-240
    [15]
    Xie Hongen, Hu Peng, Zheng Kui, et al. Study on phase and chemical composition of V-Ti sinter during softening, melting and dripping process[J]. Iron Steel Vanadium Titanium, 2022,43(2):107-117. (谢洪恩, 胡鹏, 郑魁, 等. 钒钛烧结矿软熔滴落过程中的物相组成及化学成分变化规律研究[J]. 钢铁钒钛, 2022,43(2):107-117.

    Xie Hongen, Hu Peng, Zheng Kui, et al. Study on phase and chemical composition of V-Ti sinter during softening, melting and dripping process[J]. Iron Steel Vanadium Titanium, 2022, 43(2): 107-117
    [16]
    Wang Dongsheng. Experimental study of Fe removal from TiC-containing slag[J]. Iron Steel Vanadium Titanium, 2020,41(4):87-91. (王东生. 含TiC炉渣除铁试验研究[J]. 钢铁钒钛, 2020,41(4):87-91.

    Wang Dongsheng. Experimental study of Fe removal from TiC-containing slag[J]. Iron Steel Vanadium Titanium, 2020, 41(4): 87-91
    [17]
    Wang Cui, Jiao Kexin, Zhang Jianliang, et al. Characterization of Ti(C, N) superstructure derived from hot metal[J]. ISIJ International, 2021,61(1):138.
    [18]
    Jiang Tinfang, Zhao Lang, Luo Xiangyu, et al. Study on separation of titanium and slag during carbonization of titanium-bearing blast furnace slag[J]. Iron Steel Vanadium Titanium, 2021,42(6):51-58. (简廷芳, 赵朗, 罗翔宇, 等. 含钛高炉渣碳化过程钛-渣分离研究[J]. 钢铁钒钛, 2021,42(6):51-58.

    Jiang Tinfang, Zhao Lang, Luo Xianyu, et al. Study on separation of titanium and slag during carbonization of titanium-bearing blast furnace slag[J]. Iron Steel Vanadium Titanium, 2021, 42(6): 51-58
    [19]
    Tian Ye, Chen Shujun, Sun Yanqin, et al. Settlement process of iron in titania bearing blast furnace slag[J]. Iron Steel Vanadium Titanium, 2016,37(3):91-97. (田野, 陈树军, 孙艳芹, 等. 含钛高炉渣中铁沉降行为研究[J]. 钢铁钒钛, 2016,37(3):91-97.

    Tian Ye, Chen Shujun, Sun Yanqin, et al. Settlement process of iron in titania bearing blast furnace slag[J]. Iron Steel Vanadium Titanium, 2016, 37(3): 91-97
    [20]
    马世伟. 高钛型高炉渣泡沫化机理的研究[D]. 重庆: 重庆大学, 2013.

    Ma Shiwei. Research on the mechanism of foaming for the blast furnace slag bearing high titania[D]. Chongqing: Chongqing University, 2013.
    [21]
    黄希祜. 钢铁冶金原理[M]. 北京: 冶金工业出版社, 2013.

    Huang Xihu. Principles of iron and steel metallurgy[M]. Beijing: Metallurgical Industry Press, 2013.
    [22]
    王筱留. 钢铁冶金学(炼铁部分)[M]. 北京: 冶金工业出版社, 2018.

    Wang Xiaoliu. Iron and steel metallurgy (ironmaking)[M]. Beijing: Metallurgical Industry Press, 2018.
    [23]
    Donald R Askeland, Pradeep P Phulé. 材料科学与工程基础(影印本)[M]. 北京: 清华大学出版社, 2015.

    Donald R Askeland, Pradeep P Phulé. Essentials of materials science and engineering[M]. Beijing: Tsinghua University Press, 2015.
    [24]
    杜鹤桂. 高炉冶炼钒钛磁铁矿原理[M]. 北京: 科学出版社, 1996.

    Du Hegui. Principle of smelting vanadium-bearing titanomagnetite in blast furnace[M]. Beijing: Science Press, 1996.
    [25]
    Hu Qingqing, Ma Donglai, Zhou Kai, et al. Phase transformation and slag evolution of vanadium-titanium magnetite pellets during softening-melting process[J]. Powder Technology, 2022,(396):710-717.
    [26]
    Tang Wendong, Yang Songtao, Xue Xiangxin. Effect of titanium on the smelting process of chromium-bearing vanadium titanomagnetite pellets[J]. JOM, 2021,73(5):1362-1370.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(10)

    Article Metrics

    Article views (370) PDF downloads(27) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return